Analysis of medical images to support decision-making in the musculoskeletal field

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Ramos, Jonathan da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-102307/
Resumo: Computer-aided diagnosis, computer-based image retrieval systems, and the radiomics approach are great allies to aid in decision making. However, an ordinary and laborious step in those approaches is the segmentation of a region of interest, for example, a vertebral body. Unfortunately, manually drawing accurate and precise boundaries is time-consuming and impractical to perform for many exams. Consequently, semi-automatic segmentation tools, with minimal interaction, pose high and attractive demand to the computational end. The greater goal is that, at some point, the physician intervention in the segmentation would be minimal with just a few or even no manual corrections. This doctorate research has the following hypothesis: The segmentation of vertebral bodies in MRI can be performed computationally faster with easier manual interaction and, at the same time, producing accurate results. We evaluate this hypothesis in three application scenarios as follows. First, we dealt with the challenging task of segmenting vertebral compression fractures in single MRI slices. We proposed Balanced Growth (BGrowth), which achieved 96.1% accuracy while keeping fast run-time performance. Second, we stepped into the segmentation of volumetric spine MRI exams, which is even more challenging due to several slices in the exams. We came up with a family of segmentation methods, presenting faster approaches with less manual interaction. Our final solution required annotating only two or three slices (among about 100 slices) and achieved 94% of F-Measure. To do so, we proposed the Estimation of ANnotation on Intermediary Slices (EANIS) along with the Fast Clever Segmentation (FastCleverSeg) method. Our approach was the fastest one and, at the same time, presented results similar to or better than the competitors. Finally, we assessed patients with bone fragility fractures using spine MRI and the radiomics approach. We proposed BonE Analysis Using Texture (BEAUT), which achieved 97% AUC for differentiating patients with and without vertebral body fragility fracture. Therefore, this doctorate research contributed to the state-of-the-art by introducing segmentation methods that presented promising results in the three scenarios mentioned above. We firmly believe that our contributions have a high potential to aid in the decision-making process and producing more ground truths for the training of deep learning models.
id USP_56d52b076decd7162b7fd323be31a4ea
oai_identifier_str oai:teses.usp.br:tde-17082021-102307
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Analysis of medical images to support decision-making in the musculoskeletal fieldAnálise de imagens do músculo esquelético para apoio a tomada de decisãoFratura vertebralImage segmentationMagnetic resonance imagingRessonância magnéticaSegmentação de imagensVertebral fragility fractureComputer-aided diagnosis, computer-based image retrieval systems, and the radiomics approach are great allies to aid in decision making. However, an ordinary and laborious step in those approaches is the segmentation of a region of interest, for example, a vertebral body. Unfortunately, manually drawing accurate and precise boundaries is time-consuming and impractical to perform for many exams. Consequently, semi-automatic segmentation tools, with minimal interaction, pose high and attractive demand to the computational end. The greater goal is that, at some point, the physician intervention in the segmentation would be minimal with just a few or even no manual corrections. This doctorate research has the following hypothesis: The segmentation of vertebral bodies in MRI can be performed computationally faster with easier manual interaction and, at the same time, producing accurate results. We evaluate this hypothesis in three application scenarios as follows. First, we dealt with the challenging task of segmenting vertebral compression fractures in single MRI slices. We proposed Balanced Growth (BGrowth), which achieved 96.1% accuracy while keeping fast run-time performance. Second, we stepped into the segmentation of volumetric spine MRI exams, which is even more challenging due to several slices in the exams. We came up with a family of segmentation methods, presenting faster approaches with less manual interaction. Our final solution required annotating only two or three slices (among about 100 slices) and achieved 94% of F-Measure. To do so, we proposed the Estimation of ANnotation on Intermediary Slices (EANIS) along with the Fast Clever Segmentation (FastCleverSeg) method. Our approach was the fastest one and, at the same time, presented results similar to or better than the competitors. Finally, we assessed patients with bone fragility fractures using spine MRI and the radiomics approach. We proposed BonE Analysis Using Texture (BEAUT), which achieved 97% AUC for differentiating patients with and without vertebral body fragility fracture. Therefore, this doctorate research contributed to the state-of-the-art by introducing segmentation methods that presented promising results in the three scenarios mentioned above. We firmly believe that our contributions have a high potential to aid in the decision-making process and producing more ground truths for the training of deep learning models.Sistemas de diagnóstico auxiliado por computador, recuperação de imagens por conteúdo e a abordagem radiômica são grandes aliados no auxílio à tomada de decisão. Contudo, um passo comum entre estas abordagens é a segmentação de uma região de interesse, por exemplo, um corpo vertebral. Desenhar manualmente, de uma forma precisa, os contornos de um corpo vertebral é uma tarefa demorada e trabalhosa, tornando-se impraticável quando há uma quantidade considerável de exames a segmentar. Como consequência, ferramentas semiautomáticas, com uma interação manual mínima, se torna atrativa e impulsiona uma alta demanda para o lado computacional. Deseja-se que, em algum ponto, a interação seja mínima, com pouca ou nenhuma correção manual. Este doutorado tem a seguinte hipótese: A segmentação de corpos vertebrais em RM pode ser realizada de forma computacionalmente rápida, com interação manual reduzida e, ao mesmo tempo, apresentando resultados precisos. A validação desta hipótese foi realizada em três cenários. No primeiro cenário, consideramos a segmentação de corpos vertebrais fraturados com apenas um corte de RM, no qual foi proposto o método BGrowth, o qual apresentou uma acurácia de 96.1% com um rápido tempo de processamento; No segundo cenário, trabalhamos com a segmentação de RM volumétricas, que é uma tarefa ainda mais desafiadora devido à considerável quantidade de cortes presentes nestes exames. Foi desenvolvida uma família de métodos de segmentação, apresentando-se abordagens cada vez mais rápidas e com menor interação manual. Ao final, apenas dois ou três cortes precisaram ser anotados, entre cerca de 100 cortes, atingindo 94% de F-Measure. Para tal, foi proposta a estimativa de anotações nos cortes intermediários (EANIS), juntamente com o método FastCleverSeg, o qual apresentou o tempo de execução mais rápido e, ao mesmo tempo, resultado igual ou superior aos competidores; No terceiro cenário, realizamos a análise de pacientes com fraturas por fragilidade usando exames de RM e a abordagem radiômica. Foi proposto um método de análise de textura (BEAUT), o qual obteve uma AUC de 97% na diferenciação de pacientes com e sem fratura por fragilidade. Portanto, este doutorado contribuiu para o estado-da-arte introduzindo métodos de segmentação que apresentaram resultados promissores nos três cenários mencionados acima. As contribuições dessa tese têm um potencial para auxiliar no processo de tomada de decisão e na produção de padrão ouro para o treinamento de modelos de aprendizado profundo.Biblioteca Digitais de Teses e Dissertações da USPTraina, Agma Juci MachadoRamos, Jonathan da Silva2021-07-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-102307/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-17T13:26:02Zoai:teses.usp.br:tde-17082021-102307Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-17T13:26:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Analysis of medical images to support decision-making in the musculoskeletal field
Análise de imagens do músculo esquelético para apoio a tomada de decisão
title Analysis of medical images to support decision-making in the musculoskeletal field
spellingShingle Analysis of medical images to support decision-making in the musculoskeletal field
Ramos, Jonathan da Silva
Fratura vertebral
Image segmentation
Magnetic resonance imaging
Ressonância magnética
Segmentação de imagens
Vertebral fragility fracture
title_short Analysis of medical images to support decision-making in the musculoskeletal field
title_full Analysis of medical images to support decision-making in the musculoskeletal field
title_fullStr Analysis of medical images to support decision-making in the musculoskeletal field
title_full_unstemmed Analysis of medical images to support decision-making in the musculoskeletal field
title_sort Analysis of medical images to support decision-making in the musculoskeletal field
author Ramos, Jonathan da Silva
author_facet Ramos, Jonathan da Silva
author_role author
dc.contributor.none.fl_str_mv Traina, Agma Juci Machado
dc.contributor.author.fl_str_mv Ramos, Jonathan da Silva
dc.subject.por.fl_str_mv Fratura vertebral
Image segmentation
Magnetic resonance imaging
Ressonância magnética
Segmentação de imagens
Vertebral fragility fracture
topic Fratura vertebral
Image segmentation
Magnetic resonance imaging
Ressonância magnética
Segmentação de imagens
Vertebral fragility fracture
description Computer-aided diagnosis, computer-based image retrieval systems, and the radiomics approach are great allies to aid in decision making. However, an ordinary and laborious step in those approaches is the segmentation of a region of interest, for example, a vertebral body. Unfortunately, manually drawing accurate and precise boundaries is time-consuming and impractical to perform for many exams. Consequently, semi-automatic segmentation tools, with minimal interaction, pose high and attractive demand to the computational end. The greater goal is that, at some point, the physician intervention in the segmentation would be minimal with just a few or even no manual corrections. This doctorate research has the following hypothesis: The segmentation of vertebral bodies in MRI can be performed computationally faster with easier manual interaction and, at the same time, producing accurate results. We evaluate this hypothesis in three application scenarios as follows. First, we dealt with the challenging task of segmenting vertebral compression fractures in single MRI slices. We proposed Balanced Growth (BGrowth), which achieved 96.1% accuracy while keeping fast run-time performance. Second, we stepped into the segmentation of volumetric spine MRI exams, which is even more challenging due to several slices in the exams. We came up with a family of segmentation methods, presenting faster approaches with less manual interaction. Our final solution required annotating only two or three slices (among about 100 slices) and achieved 94% of F-Measure. To do so, we proposed the Estimation of ANnotation on Intermediary Slices (EANIS) along with the Fast Clever Segmentation (FastCleverSeg) method. Our approach was the fastest one and, at the same time, presented results similar to or better than the competitors. Finally, we assessed patients with bone fragility fractures using spine MRI and the radiomics approach. We proposed BonE Analysis Using Texture (BEAUT), which achieved 97% AUC for differentiating patients with and without vertebral body fragility fracture. Therefore, this doctorate research contributed to the state-of-the-art by introducing segmentation methods that presented promising results in the three scenarios mentioned above. We firmly believe that our contributions have a high potential to aid in the decision-making process and producing more ground truths for the training of deep learning models.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-102307/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17082021-102307/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258195390627840