Genetic profile analysis of tumor stem cells in locally advanced breast cancer

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silveira, Willian Abraham da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17145/tde-05012016-144854/
Resumo: INTRODUCTION: Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC), defined in this work as the ALDH1high/LIN-/ESA+ population, are thought to be responsible for metastasis and chemoresistance. The objective of this work is to find gene master regulators, in particular transcription factors (TFs), which are controlling the bCSC phenotype. METHODS: We used in this work two groups of datasets with transcriptome data, the discovery dataset group contains one dataset obtained by ourselves containing three paired samples comparing the bCSC and the bulk of the tumor (My Data - bCSC/Bulk dataset), a dataset with eight paired samples comparing the bCSC and cancer cells (Wicha - bCSC/CC dataset) and a dataset with 115 samples of breast cancer tissue (clinical response dataset). The second group, validation datasets, contains the BRCA-TCGA dataset with information of 621 samples, 4142 breast cancer samples of the Kmplot tool, 17 primary samples of BasL subtype and their information of grafting in patient derived xenografts and analyzes of cell lines (MF10A and HMLE). For the analyzes we used the paired t-test in the Limma R package, the ARACNE algorithm for the inference of regulons in the clinical response dataset, MRA-FET to define the master regulators of the bCSC phenotype, and GSEA to identify the biological meaning of the findings in the different datasets. RESULTS: We identified 12 TFs as master regulators of the bCSC phenotype, with nine of them forming two highly interconnected networks, one positively related with the bCSC phenotype formed by SNAI2, TWIST, PRRX1, BNC2 and TBX5 with its regulons, defined here as the mesenchymal transcription network and one negative correlated to the phenotype formed by SCML4, ZNF831, SP140 and IKZF3, defined as the immune response transcription network, totally unknown in the context of breast cancer in the literature. Although still with weak evidence, ZEB1 seems to control the two networks and can be responsible for the expression of ALDH1 and of the three remaining TFs: ID4, HOXA5 and TEAD1. As their names portray, our data showed in the different datasets, and independently of the molecular subtype and of the platform used, that the mesenchymal transcription network seems to be responsible for the bCSC phenotype and the immune response transcription network to the adaptive immune response in the tumor and a better prognosis for the patients. We also defined 10 membrane proteins as new markers and/or therapeutic targets of the bCSC. CONCLUSION: We found and described two TF networks that seem to control the bCSC phenotype, one of them totally unknown until now and correlated to a good prognosis. Our findings have a clear potential for clinical use.
id USP_597ce6d07002060fe11d38c4e6b2b823
oai_identifier_str oai:teses.usp.br:tde-05012016-144854
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Genetic profile analysis of tumor stem cells in locally advanced breast cancerAnálise do perfil genético de células tronco tumorais no câncer de mama localmente avançadoBiologia SistêmicaBreast cancerCancêr de MamaCélula-Troncostem cellSystem BiologyTranscriptomatranscriptomeINTRODUCTION: Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC), defined in this work as the ALDH1high/LIN-/ESA+ population, are thought to be responsible for metastasis and chemoresistance. The objective of this work is to find gene master regulators, in particular transcription factors (TFs), which are controlling the bCSC phenotype. METHODS: We used in this work two groups of datasets with transcriptome data, the discovery dataset group contains one dataset obtained by ourselves containing three paired samples comparing the bCSC and the bulk of the tumor (My Data - bCSC/Bulk dataset), a dataset with eight paired samples comparing the bCSC and cancer cells (Wicha - bCSC/CC dataset) and a dataset with 115 samples of breast cancer tissue (clinical response dataset). The second group, validation datasets, contains the BRCA-TCGA dataset with information of 621 samples, 4142 breast cancer samples of the Kmplot tool, 17 primary samples of BasL subtype and their information of grafting in patient derived xenografts and analyzes of cell lines (MF10A and HMLE). For the analyzes we used the paired t-test in the Limma R package, the ARACNE algorithm for the inference of regulons in the clinical response dataset, MRA-FET to define the master regulators of the bCSC phenotype, and GSEA to identify the biological meaning of the findings in the different datasets. RESULTS: We identified 12 TFs as master regulators of the bCSC phenotype, with nine of them forming two highly interconnected networks, one positively related with the bCSC phenotype formed by SNAI2, TWIST, PRRX1, BNC2 and TBX5 with its regulons, defined here as the mesenchymal transcription network and one negative correlated to the phenotype formed by SCML4, ZNF831, SP140 and IKZF3, defined as the immune response transcription network, totally unknown in the context of breast cancer in the literature. Although still with weak evidence, ZEB1 seems to control the two networks and can be responsible for the expression of ALDH1 and of the three remaining TFs: ID4, HOXA5 and TEAD1. As their names portray, our data showed in the different datasets, and independently of the molecular subtype and of the platform used, that the mesenchymal transcription network seems to be responsible for the bCSC phenotype and the immune response transcription network to the adaptive immune response in the tumor and a better prognosis for the patients. We also defined 10 membrane proteins as new markers and/or therapeutic targets of the bCSC. CONCLUSION: We found and described two TF networks that seem to control the bCSC phenotype, one of them totally unknown until now and correlated to a good prognosis. Our findings have a clear potential for clinical use.INTRODUÇÃO: O cancer de mama é no mundo o câncer mais comum em mulheres e a disseminação metastática é o principal fator relacionado com a morte pela doença. Acreditasse que as células tronco do câncer de mama - bCSC, na sigla em inglês e definida neste trabalho com a população ALDH1high/LIN-/ESA+ - é responsável pela metástase e pela quimioresistência. O objetivo deste trabalho é encontrar genes que são essenciais para o controle do fenótipo das bCSC, em particular fatores de transcrição. MATERIAIS E MÉTODOS: Nesse trabalho nós utlizamos dois grupos de datasets com dados do transcriptoma, o grupo de datasets de descoberta contém um dataset gerado por nós com 3 amostras pareadas comparando as bCSC com o tumor total (My Data - bCSC/Bulk dataset), um dataset com 8 amostras pareadas comparando as bCSC com as células cancerígenas (Wicha - bCSC/CC dataset) e um dataset com 115 amostras de tecido de câncer de mama (Clinical Response dataset). O segundo grupo, grupo de validação, contém o dataset BRCA-TCGA com 621 amostras, as 4142 amostras de câncer de mama da ferramenta Kmplot, as 17 amostras humanas primárias do subtipo BasL e sua informação sobre a geração, ou não, de tumores em camundongos imunosuprimidos e a análise de linhagens celulares (MF10A e HMLE). Para a análise dos dataset utilizamos o test-t pareado no pacote Limma da liguagem R, o algoritmo ARACNE para a inferência de regulons no dataset Clinical Response, a análise MRA-FET para definir os Reguladores Mestres para o fenótipo das bCSC e a análise GSEA para identificar o significado biológico de nosso achados nos diferentes datasets. RESULTADOS E DISCUSSÃO: Nós identificamos 12 TFs como reguladores mestres, com 9 deles formando duas redes altamente conectadas, uma positivamente relacionada ao fenótipo bCSC formada por SNAI2, TWIST, PRRX1, BNC2 e TBX5 com seus regulons, e definida aqui como a rede de transcrição mesenquimal, e uma rede correlacionada negativamente, formada por SCML4, ZNF831, SP140 e IKZF3, definida aqui como a rede de transcrição da resposta imune e totalmente desconhecida da literatura no contexto do câncer de mama. Embora ainda com fraca evidencia, ZEB1 para controlar as duas redes e ser responsável pela expressão de ALDH1 e dos 3 TFs restantes: ID4, HOXA5 e TEAD1. Como mostram seus nomes, e independente do dataset, do subtipo molecular ou da plataforma utilizada, a rede de transcrição mesenquimal, parece ser responsável pela manutenção do fenótipo de células tronco cancerígenas e a rede de transcrição da resposta imune pela resposta imune adaptativa ao tumor e a um bom prognóstico para as pacientes. CONCLUSÃO: Nós encontramos e descrevemos duas redes de fatores de transcrição que parecem controlar o fenótipo das bCSC, uma delas totalmente desconhecida até agora e relacionada a um bom prognóstico. Nosso achados possuem um claro potencial para uso clínico.Biblioteca Digitais de Teses e Dissertações da USPTiezzi, Daniel GuimarãesSilveira, Willian Abraham da2015-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17145/tde-05012016-144854/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-05012016-144854Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Genetic profile analysis of tumor stem cells in locally advanced breast cancer
Análise do perfil genético de células tronco tumorais no câncer de mama localmente avançado
title Genetic profile analysis of tumor stem cells in locally advanced breast cancer
spellingShingle Genetic profile analysis of tumor stem cells in locally advanced breast cancer
Silveira, Willian Abraham da
Biologia Sistêmica
Breast cancer
Cancêr de Mama
Célula-Tronco
stem cell
System Biology
Transcriptoma
transcriptome
title_short Genetic profile analysis of tumor stem cells in locally advanced breast cancer
title_full Genetic profile analysis of tumor stem cells in locally advanced breast cancer
title_fullStr Genetic profile analysis of tumor stem cells in locally advanced breast cancer
title_full_unstemmed Genetic profile analysis of tumor stem cells in locally advanced breast cancer
title_sort Genetic profile analysis of tumor stem cells in locally advanced breast cancer
author Silveira, Willian Abraham da
author_facet Silveira, Willian Abraham da
author_role author
dc.contributor.none.fl_str_mv Tiezzi, Daniel Guimarães
dc.contributor.author.fl_str_mv Silveira, Willian Abraham da
dc.subject.por.fl_str_mv Biologia Sistêmica
Breast cancer
Cancêr de Mama
Célula-Tronco
stem cell
System Biology
Transcriptoma
transcriptome
topic Biologia Sistêmica
Breast cancer
Cancêr de Mama
Célula-Tronco
stem cell
System Biology
Transcriptoma
transcriptome
description INTRODUCTION: Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells (bCSC), defined in this work as the ALDH1high/LIN-/ESA+ population, are thought to be responsible for metastasis and chemoresistance. The objective of this work is to find gene master regulators, in particular transcription factors (TFs), which are controlling the bCSC phenotype. METHODS: We used in this work two groups of datasets with transcriptome data, the discovery dataset group contains one dataset obtained by ourselves containing three paired samples comparing the bCSC and the bulk of the tumor (My Data - bCSC/Bulk dataset), a dataset with eight paired samples comparing the bCSC and cancer cells (Wicha - bCSC/CC dataset) and a dataset with 115 samples of breast cancer tissue (clinical response dataset). The second group, validation datasets, contains the BRCA-TCGA dataset with information of 621 samples, 4142 breast cancer samples of the Kmplot tool, 17 primary samples of BasL subtype and their information of grafting in patient derived xenografts and analyzes of cell lines (MF10A and HMLE). For the analyzes we used the paired t-test in the Limma R package, the ARACNE algorithm for the inference of regulons in the clinical response dataset, MRA-FET to define the master regulators of the bCSC phenotype, and GSEA to identify the biological meaning of the findings in the different datasets. RESULTS: We identified 12 TFs as master regulators of the bCSC phenotype, with nine of them forming two highly interconnected networks, one positively related with the bCSC phenotype formed by SNAI2, TWIST, PRRX1, BNC2 and TBX5 with its regulons, defined here as the mesenchymal transcription network and one negative correlated to the phenotype formed by SCML4, ZNF831, SP140 and IKZF3, defined as the immune response transcription network, totally unknown in the context of breast cancer in the literature. Although still with weak evidence, ZEB1 seems to control the two networks and can be responsible for the expression of ALDH1 and of the three remaining TFs: ID4, HOXA5 and TEAD1. As their names portray, our data showed in the different datasets, and independently of the molecular subtype and of the platform used, that the mesenchymal transcription network seems to be responsible for the bCSC phenotype and the immune response transcription network to the adaptive immune response in the tumor and a better prognosis for the patients. We also defined 10 membrane proteins as new markers and/or therapeutic targets of the bCSC. CONCLUSION: We found and described two TF networks that seem to control the bCSC phenotype, one of them totally unknown until now and correlated to a good prognosis. Our findings have a clear potential for clinical use.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17145/tde-05012016-144854/
url http://www.teses.usp.br/teses/disponiveis/17/17145/tde-05012016-144854/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257870954921984