Advancements in the finite series method of the generalized Lorenz-Mie theory

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Votto, Luiz Felipe Machado
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/
Resumo: The finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials.
id USP_5bbf27070093830dc9ba76b8bbee55a1
oai_identifier_str oai:teses.usp.br:tde-13092024-083840
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Advancements in the finite series method of the generalized Lorenz-Mie theoryAvanços no método da série finita da teoria generalizada de Lorenz-Mieespalhamentofinite seriesgeneralized Lorenz-Mie theorylaserslasersMie theoryscatteringsérie finitateoria de Mieteoria generalizada de Lorenz-MieThe finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials.O método da série finita da teoria generalizada de Lorenz-Mie foi posto de lado por décadas desde sua concepção devido a sua aparente falta de flexibilidade ao se aplicar a cada novo tipo de campo eletromagnético. Os pontos fortes do método não eram claros até este momento. Este estudo traz um conjunto de artigos publicados em revistas científicas estabelecendo as mais recentes aplicações to método da série finita e suas implicações. Em geral, o foco foi a representação do espalhamento de feixes de laser, modelados como soluções da equação de onda paraxial, por obstáculos de formato esférico. Diversas famílias de soluções de ordem superior, como modos laguerre-gaussianos, bessel-gaussianos, hermite-gaussianos e ince-gaussianos, foram incluídas no formalismo da teoria generalizada de Lorenz-Mie com seus fatores de forma dados por expressões em forma fechada. A performance to método da série finita se mostrou superior à de outros métodos comuns nesses casos. No processo de implementação do método, um fenômeno inesperado aconteceu – ficou conhecido como a explosão dos coeficientes. Durante a investigação, foi possível determinar uma dupla origem para as explosões. Primeiro, os fatores de forma da série finita são suscetíveis a propagação de erro fora de controle quando a representação numérica não dispõe de precisão suficiente. Segundo, a própria formulação física dos feixes escalares paraxiais se traduziram em uma modelagem divergente quando colocados em termos de soluções para as equações de Maxwell. Foi comprovado que o fenômeno das explosões se origina também do próprio esquema matemático descrevendo os campos incidentes, pois mostrou-se que os fatores de forma do feixe gaussiano fundamental são dados por uma família de funções especiais conhecidas como polinômios de Bessel generalizados.Biblioteca Digitais de Teses e Dissertações da USPAmbrosio, Leonardo AndréVotto, Luiz Felipe Machado2024-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-16T12:45:02Zoai:teses.usp.br:tde-13092024-083840Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-16T12:45:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Advancements in the finite series method of the generalized Lorenz-Mie theory
Avanços no método da série finita da teoria generalizada de Lorenz-Mie
title Advancements in the finite series method of the generalized Lorenz-Mie theory
spellingShingle Advancements in the finite series method of the generalized Lorenz-Mie theory
Votto, Luiz Felipe Machado
espalhamento
finite series
generalized Lorenz-Mie theory
lasers
lasers
Mie theory
scattering
série finita
teoria de Mie
teoria generalizada de Lorenz-Mie
title_short Advancements in the finite series method of the generalized Lorenz-Mie theory
title_full Advancements in the finite series method of the generalized Lorenz-Mie theory
title_fullStr Advancements in the finite series method of the generalized Lorenz-Mie theory
title_full_unstemmed Advancements in the finite series method of the generalized Lorenz-Mie theory
title_sort Advancements in the finite series method of the generalized Lorenz-Mie theory
author Votto, Luiz Felipe Machado
author_facet Votto, Luiz Felipe Machado
author_role author
dc.contributor.none.fl_str_mv Ambrosio, Leonardo André
dc.contributor.author.fl_str_mv Votto, Luiz Felipe Machado
dc.subject.por.fl_str_mv espalhamento
finite series
generalized Lorenz-Mie theory
lasers
lasers
Mie theory
scattering
série finita
teoria de Mie
teoria generalizada de Lorenz-Mie
topic espalhamento
finite series
generalized Lorenz-Mie theory
lasers
lasers
Mie theory
scattering
série finita
teoria de Mie
teoria generalizada de Lorenz-Mie
description The finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/
url https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279194396721152