Advancements in the finite series method of the generalized Lorenz-Mie theory
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/ |
Resumo: | The finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials. |
| id |
USP_5bbf27070093830dc9ba76b8bbee55a1 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-13092024-083840 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Advancements in the finite series method of the generalized Lorenz-Mie theoryAvanços no método da série finita da teoria generalizada de Lorenz-Mieespalhamentofinite seriesgeneralized Lorenz-Mie theorylaserslasersMie theoryscatteringsérie finitateoria de Mieteoria generalizada de Lorenz-MieThe finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials.O método da série finita da teoria generalizada de Lorenz-Mie foi posto de lado por décadas desde sua concepção devido a sua aparente falta de flexibilidade ao se aplicar a cada novo tipo de campo eletromagnético. Os pontos fortes do método não eram claros até este momento. Este estudo traz um conjunto de artigos publicados em revistas científicas estabelecendo as mais recentes aplicações to método da série finita e suas implicações. Em geral, o foco foi a representação do espalhamento de feixes de laser, modelados como soluções da equação de onda paraxial, por obstáculos de formato esférico. Diversas famílias de soluções de ordem superior, como modos laguerre-gaussianos, bessel-gaussianos, hermite-gaussianos e ince-gaussianos, foram incluídas no formalismo da teoria generalizada de Lorenz-Mie com seus fatores de forma dados por expressões em forma fechada. A performance to método da série finita se mostrou superior à de outros métodos comuns nesses casos. No processo de implementação do método, um fenômeno inesperado aconteceu – ficou conhecido como a explosão dos coeficientes. Durante a investigação, foi possível determinar uma dupla origem para as explosões. Primeiro, os fatores de forma da série finita são suscetíveis a propagação de erro fora de controle quando a representação numérica não dispõe de precisão suficiente. Segundo, a própria formulação física dos feixes escalares paraxiais se traduziram em uma modelagem divergente quando colocados em termos de soluções para as equações de Maxwell. Foi comprovado que o fenômeno das explosões se origina também do próprio esquema matemático descrevendo os campos incidentes, pois mostrou-se que os fatores de forma do feixe gaussiano fundamental são dados por uma família de funções especiais conhecidas como polinômios de Bessel generalizados.Biblioteca Digitais de Teses e Dissertações da USPAmbrosio, Leonardo AndréVotto, Luiz Felipe Machado2024-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-16T12:45:02Zoai:teses.usp.br:tde-13092024-083840Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-16T12:45:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Advancements in the finite series method of the generalized Lorenz-Mie theory Avanços no método da série finita da teoria generalizada de Lorenz-Mie |
| title |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| spellingShingle |
Advancements in the finite series method of the generalized Lorenz-Mie theory Votto, Luiz Felipe Machado espalhamento finite series generalized Lorenz-Mie theory lasers lasers Mie theory scattering série finita teoria de Mie teoria generalizada de Lorenz-Mie |
| title_short |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| title_full |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| title_fullStr |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| title_full_unstemmed |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| title_sort |
Advancements in the finite series method of the generalized Lorenz-Mie theory |
| author |
Votto, Luiz Felipe Machado |
| author_facet |
Votto, Luiz Felipe Machado |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ambrosio, Leonardo André |
| dc.contributor.author.fl_str_mv |
Votto, Luiz Felipe Machado |
| dc.subject.por.fl_str_mv |
espalhamento finite series generalized Lorenz-Mie theory lasers lasers Mie theory scattering série finita teoria de Mie teoria generalizada de Lorenz-Mie |
| topic |
espalhamento finite series generalized Lorenz-Mie theory lasers lasers Mie theory scattering série finita teoria de Mie teoria generalizada de Lorenz-Mie |
| description |
The finite series method of the generalized Lorenz-Mie theory has been put aside for decades since its inception due to its apparent lack of flexibility when applied to each new type of electromagnetic field. The strong points of the method were still unclear up until now. This study features a collection of papers published in scientific journals displaying the most recent applications of the finite series method and their implications. Generally, the focus was the representation of the scattering of laser beams, modeled as solutions to the paraxial wave equation, by spherical obstacles. Several families of higher-order solutions, such as Laguerre-Gaussian, Bessel-Gaussian, Hermite-Gaussian, and Ince-Gaussian modes, were included in the formalism of the generalized Lorenz-Mie theory with their beam shape coefficients given by closed-form expressions. The performance of the finite series method was shown to be better than other usual methods in such cases. In the process of implementing the finite series method, a phenomenon that was unaccounted for took place – the issue of the blowing-up coefficients. During this investigation, it was possible to determine that the blowing-ups had two origins. First, the finite series coefficients are susceptible to catastrophic error propagation when the numerical representation has low precision. Second, the actual physical formulation of scalar paraxial beams translated to a diverging model when put in terms of solutions to Maxwells equations. The blowing-up phenomenon has been proven to originate from the actual mathematical scheme that describes the incident fields since the finite series beam shape coefficients of a fundamental Gaussian beam are shown to be given by a family of special functions known as the generalized Bessel polynomials. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18155/tde-13092024-083840/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279194396721152 |