Arbitragem estatística e inteligência artificial

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Parreiras, Luiz Paulo Rodrigues de Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/92/92131/tde-13072023-113828/
Resumo: O objetivo desta dissertação é o desenvolvimento de um modelo de arbitragem estatística, para identificar oportunidades no mercado de ações brasileiro, através do uso de técnicas econométricas e de inteligência artificial. O conceito de arbitragem estatística envolve a busca por anomalias momentâneas nas relações de preços entre diversos ativos, de modo que, quando tais distorções sejam corrigidas, seja possível obter lucros, com consistência é baixo risco. O uso de técnicas do campo da econometria abre a possibilidade de determinar quando a relação entre dois (ou mais) ativos se desvia de um certo equilíbrio. O conceito de cointegração, aqui representado pela metodologia de Engle-Granger, permite testar a existência desse equilíbrio (mais precisamente, estacionariedade no resíduo), e determinar um modelo para aproveitar as oportunidades criadas pelos desvios. Na dissertação é apresentada uma variação da técnica de Engle-Granger que permite construir cestas de ações, cujos resíduos (ou mispricings) são cointegrados. Contudo, tomar decisões de compra e venda apenas com base em idéias de reversão à média não necessariamente é lucrativo, como será mostrado através da simulação de estratégias de arbitragem estatística implícita. As redes neurais aparecem então como uma ferramenta não-paramétrica de previsão, dada sua capacidade de se adaptar a dados com grande dose de ruído. A teoria relevante para o projeto e uso de uma rede neural é apresentada, e são discutidas aplicações dessa classe de modelos a problemas de previsão em finanças. Mais ainda, cada uma das características de uma boa rede é explorada, visando um modelo de alto desempenho. Este modelo é então combinado com o modelo de cointegração, e vai prever o comportamento futuro dos mispricings, de maneira a identificar os pontos de compra e venda destas cestas de ações. Ao fim, algumas técnicas de trading são implementadas em conjunto com os modelos, de maneira a melhorar os retornos sem aumentar os riscos, na presença de custos de transação. O modelo final é simulado fora da amostra ao longo de todo o ano de 2006, operando 29 estratégias de arbitragem simultaneamente, com retorno bastante satisfatório acima de 80%, índice de Sharpe de 3,5 e baixa correlação com o resto do mercado.
id USP_5c305567573a45e39ad9f0a06ada3fed
oai_identifier_str oai:teses.usp.br:tde-13072023-113828
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Arbitragem estatística e inteligência artificialStatistical arbitrage and artificial intelligenceArbitrageArbitragemArtificial intelligenceEconometriaEconometricsEstatísticaFinancial optionsInteligência artificialOpções financeirasStatisticsO objetivo desta dissertação é o desenvolvimento de um modelo de arbitragem estatística, para identificar oportunidades no mercado de ações brasileiro, através do uso de técnicas econométricas e de inteligência artificial. O conceito de arbitragem estatística envolve a busca por anomalias momentâneas nas relações de preços entre diversos ativos, de modo que, quando tais distorções sejam corrigidas, seja possível obter lucros, com consistência é baixo risco. O uso de técnicas do campo da econometria abre a possibilidade de determinar quando a relação entre dois (ou mais) ativos se desvia de um certo equilíbrio. O conceito de cointegração, aqui representado pela metodologia de Engle-Granger, permite testar a existência desse equilíbrio (mais precisamente, estacionariedade no resíduo), e determinar um modelo para aproveitar as oportunidades criadas pelos desvios. Na dissertação é apresentada uma variação da técnica de Engle-Granger que permite construir cestas de ações, cujos resíduos (ou mispricings) são cointegrados. Contudo, tomar decisões de compra e venda apenas com base em idéias de reversão à média não necessariamente é lucrativo, como será mostrado através da simulação de estratégias de arbitragem estatística implícita. As redes neurais aparecem então como uma ferramenta não-paramétrica de previsão, dada sua capacidade de se adaptar a dados com grande dose de ruído. A teoria relevante para o projeto e uso de uma rede neural é apresentada, e são discutidas aplicações dessa classe de modelos a problemas de previsão em finanças. Mais ainda, cada uma das características de uma boa rede é explorada, visando um modelo de alto desempenho. Este modelo é então combinado com o modelo de cointegração, e vai prever o comportamento futuro dos mispricings, de maneira a identificar os pontos de compra e venda destas cestas de ações. Ao fim, algumas técnicas de trading são implementadas em conjunto com os modelos, de maneira a melhorar os retornos sem aumentar os riscos, na presença de custos de transação. O modelo final é simulado fora da amostra ao longo de todo o ano de 2006, operando 29 estratégias de arbitragem simultaneamente, com retorno bastante satisfatório acima de 80%, índice de Sharpe de 3,5 e baixa correlação com o resto do mercado.This thesis presents the development of a framework for statistical arbitrage, in which we try to identify opportunities in Brazilian stock prices, through the combined use of cointegration and artificial intelligence techniques. The concept of statistical arbitrage revolves around the search for small anomalies in the relationships between various asset prices, so that low-risk profits can be obtained once these distortions are corrected. Econometric ideas allow the modeling of combinations of two (or more) asset prices, in order to assess deviation from any given equilibria. The concept of cointegration, here represented by the Engle-Granger methodology, develops ways of testing for the presence of this equilibrium (or more precisely, of stationarity in the residuals of a cointegrating regression), and to find an error-correcting model of these deviations. In the thesis a variation of the methodology is presented, as a way to build baskets of different stocks whose residuals (hereon called mispricings) are cointegrated. However, basing buy and sell decisions solely on the idea of mean-reversion is proved unprofitable once we test so-called implicit statistical arbitrage strategies. Neural networks are a powerful non-parametric forecasting tool, especially with highly noisy data such as stock prices. The appropriate theory is presented, and applications of neural networks to forecasting in finance are discussed with the relevant literature. Furthermore, each of the building blocks of a network with good performance is explored. The mispricing construction model is then combined with the neural network predictive model, so that its forecasts are used as the base of trading decisions. In the end, appropriate trading techniques are also employed, in order to enhance returns while keeping risks low, in the presence of transaction costs. The final model is tested out of sample throughout 2006, trading 29 different mispricing statistical arbitrage strategies, and reaching returns over 80%, with Sharpe ratio of 3.50 and very low correlation with the rest of the market.Biblioteca Digitais de Teses e Dissertações da USPVicente, RenatoParreiras, Luiz Paulo Rodrigues de Freitas2007-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/92/92131/tde-13072023-113828/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-13072023-113828Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Arbitragem estatística e inteligência artificial
Statistical arbitrage and artificial intelligence
title Arbitragem estatística e inteligência artificial
spellingShingle Arbitragem estatística e inteligência artificial
Parreiras, Luiz Paulo Rodrigues de Freitas
Arbitrage
Arbitragem
Artificial intelligence
Econometria
Econometrics
Estatística
Financial options
Inteligência artificial
Opções financeiras
Statistics
title_short Arbitragem estatística e inteligência artificial
title_full Arbitragem estatística e inteligência artificial
title_fullStr Arbitragem estatística e inteligência artificial
title_full_unstemmed Arbitragem estatística e inteligência artificial
title_sort Arbitragem estatística e inteligência artificial
author Parreiras, Luiz Paulo Rodrigues de Freitas
author_facet Parreiras, Luiz Paulo Rodrigues de Freitas
author_role author
dc.contributor.none.fl_str_mv Vicente, Renato
dc.contributor.author.fl_str_mv Parreiras, Luiz Paulo Rodrigues de Freitas
dc.subject.por.fl_str_mv Arbitrage
Arbitragem
Artificial intelligence
Econometria
Econometrics
Estatística
Financial options
Inteligência artificial
Opções financeiras
Statistics
topic Arbitrage
Arbitragem
Artificial intelligence
Econometria
Econometrics
Estatística
Financial options
Inteligência artificial
Opções financeiras
Statistics
description O objetivo desta dissertação é o desenvolvimento de um modelo de arbitragem estatística, para identificar oportunidades no mercado de ações brasileiro, através do uso de técnicas econométricas e de inteligência artificial. O conceito de arbitragem estatística envolve a busca por anomalias momentâneas nas relações de preços entre diversos ativos, de modo que, quando tais distorções sejam corrigidas, seja possível obter lucros, com consistência é baixo risco. O uso de técnicas do campo da econometria abre a possibilidade de determinar quando a relação entre dois (ou mais) ativos se desvia de um certo equilíbrio. O conceito de cointegração, aqui representado pela metodologia de Engle-Granger, permite testar a existência desse equilíbrio (mais precisamente, estacionariedade no resíduo), e determinar um modelo para aproveitar as oportunidades criadas pelos desvios. Na dissertação é apresentada uma variação da técnica de Engle-Granger que permite construir cestas de ações, cujos resíduos (ou mispricings) são cointegrados. Contudo, tomar decisões de compra e venda apenas com base em idéias de reversão à média não necessariamente é lucrativo, como será mostrado através da simulação de estratégias de arbitragem estatística implícita. As redes neurais aparecem então como uma ferramenta não-paramétrica de previsão, dada sua capacidade de se adaptar a dados com grande dose de ruído. A teoria relevante para o projeto e uso de uma rede neural é apresentada, e são discutidas aplicações dessa classe de modelos a problemas de previsão em finanças. Mais ainda, cada uma das características de uma boa rede é explorada, visando um modelo de alto desempenho. Este modelo é então combinado com o modelo de cointegração, e vai prever o comportamento futuro dos mispricings, de maneira a identificar os pontos de compra e venda destas cestas de ações. Ao fim, algumas técnicas de trading são implementadas em conjunto com os modelos, de maneira a melhorar os retornos sem aumentar os riscos, na presença de custos de transação. O modelo final é simulado fora da amostra ao longo de todo o ano de 2006, operando 29 estratégias de arbitragem simultaneamente, com retorno bastante satisfatório acima de 80%, índice de Sharpe de 3,5 e baixa correlação com o resto do mercado.
publishDate 2007
dc.date.none.fl_str_mv 2007-05-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/92/92131/tde-13072023-113828/
url https://www.teses.usp.br/teses/disponiveis/92/92131/tde-13072023-113828/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279194272989184