Archetypal analysis as an imputation method and multivariate data augmentation

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Cavalcanti, Pórtya Piscitelli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11134/tde-12112021-114459/
Resumo: Multivariate statistics studies the relation between a set of random variables and how to analyze them simultaneously. In Multivariate Statistics, archetypes are extreme elements capable of rewriting all observations of a sample, or population, by means of linear combinations. Through the Archetypal Analysis (AA), a multivariate technique that aims to reduce the dimensionality of observations, it is possible to find and select their archetypes, which are convex combinations of the data. AA can be applied in several areas of knowledge and with different uses of archetypes. On this thesis we proposed two different uses of the AA in multivariate contexts: as a sample augmentation method and as an imputation method. The first approach was addressed in samples from bivariate correlated normal random variables from different covariance structures and a simulation study was carried out to evaluate three proposed algorithms and compare them to traditional methods. It was observed that regardless of the correlation structure between the variables, it is possible to increase up to 20% of the sample size. The second approach have evaluated the use of archetypes to impute values by Single and Multiple imputation in a multivariate dataset, with simulated missing data. It was also conducted a simulation study to evaluate the proposed methods that were compared to traditional ones too. The results were promising and the imputed values were very similar to the originals. Therefore, in the two approaches discussed in this work the results points out to the ability of the archetypes representing the dataset and so expressing it as a new data or filling up possible missing values satisfactorily.
id USP_600823bcf57d71d19c0d8dc0b80bd511
oai_identifier_str oai:teses.usp.br:tde-12112021-114459
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Archetypal analysis as an imputation method and multivariate data augmentationAnálise de Arquétipos como método de imputação e aumento de dados multivariadosDados faltantesEstatística multivariadaEstudo de simulaçãoMétodo não supervisionadoMissing dataMultivariate statisticsSimulation studyUnsupervised methodMultivariate statistics studies the relation between a set of random variables and how to analyze them simultaneously. In Multivariate Statistics, archetypes are extreme elements capable of rewriting all observations of a sample, or population, by means of linear combinations. Through the Archetypal Analysis (AA), a multivariate technique that aims to reduce the dimensionality of observations, it is possible to find and select their archetypes, which are convex combinations of the data. AA can be applied in several areas of knowledge and with different uses of archetypes. On this thesis we proposed two different uses of the AA in multivariate contexts: as a sample augmentation method and as an imputation method. The first approach was addressed in samples from bivariate correlated normal random variables from different covariance structures and a simulation study was carried out to evaluate three proposed algorithms and compare them to traditional methods. It was observed that regardless of the correlation structure between the variables, it is possible to increase up to 20% of the sample size. The second approach have evaluated the use of archetypes to impute values by Single and Multiple imputation in a multivariate dataset, with simulated missing data. It was also conducted a simulation study to evaluate the proposed methods that were compared to traditional ones too. The results were promising and the imputed values were very similar to the originals. Therefore, in the two approaches discussed in this work the results points out to the ability of the archetypes representing the dataset and so expressing it as a new data or filling up possible missing values satisfactorily.A estatística multivariada estuda a relação entre um conjunto de variáveis aleatórias e como analisá-las simultaneamente. Na estatística multivariada, os arquétipos são elementos extremos capazes de reescrever todas as observações de uma amostra, ou população, por meio de combinações lineares. Por meio da Análise de Arquétipos (AA), técnica multivariada que visa reduzir a dimensionalidade das observações, é possível encontrar e selecionar seus arquétipos, que são combinações convexas dos dados. A AA pode ser aplicada em várias áreas do conhecimento e com diferentes usos de arquétipos. Nesta tese, foram propostos dois usos diferentes da AA em contextos multivariados: como método de aumento amostral e como método de imputação. A primeira abordagem foi estudada em amostras provenientes de variáveis aleatórias normais bivariadas correlacionadas de diferentes estruturas de covariância, a partir das quais um estudo de simulação foi realizado para avaliar três algoritmos propostos e compará-los com métodos tradicionais. Observou-se que independentemente da estrutura de correlação entre as variáveis é possível aumentar até 20% do tamanho amostral. A segunda abordagem avaliou o uso de arquétipos para imputar valores por imputação Simples e Múltipla em um conjunto de dados multivariados, com dados faltantes simulados. Um estudo de simulação também foi conduzido para avaliar os métodos propostos e estes também foram comparados a métodos tradicionais. Os resultados foram promissores e os valores imputados foram muito semelhantes aos originais. Portanto, nas duas abordagens discutidas nesse trabalho, os resultados apontam para a capacidade dos arquétipos de representar o conjunto de dados e, assim, expressá-los como um novo dado ou preencher de forma satisfatória os possíveis valores ausentes.Biblioteca Digitais de Teses e Dissertações da USPDias, Carlos Tadeu dos SantosCavalcanti, Pórtya Piscitelli2021-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11134/tde-12112021-114459/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-11-12T19:41:02Zoai:teses.usp.br:tde-12112021-114459Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-11-12T19:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Archetypal analysis as an imputation method and multivariate data augmentation
Análise de Arquétipos como método de imputação e aumento de dados multivariados
title Archetypal analysis as an imputation method and multivariate data augmentation
spellingShingle Archetypal analysis as an imputation method and multivariate data augmentation
Cavalcanti, Pórtya Piscitelli
Dados faltantes
Estatística multivariada
Estudo de simulação
Método não supervisionado
Missing data
Multivariate statistics
Simulation study
Unsupervised method
title_short Archetypal analysis as an imputation method and multivariate data augmentation
title_full Archetypal analysis as an imputation method and multivariate data augmentation
title_fullStr Archetypal analysis as an imputation method and multivariate data augmentation
title_full_unstemmed Archetypal analysis as an imputation method and multivariate data augmentation
title_sort Archetypal analysis as an imputation method and multivariate data augmentation
author Cavalcanti, Pórtya Piscitelli
author_facet Cavalcanti, Pórtya Piscitelli
author_role author
dc.contributor.none.fl_str_mv Dias, Carlos Tadeu dos Santos
dc.contributor.author.fl_str_mv Cavalcanti, Pórtya Piscitelli
dc.subject.por.fl_str_mv Dados faltantes
Estatística multivariada
Estudo de simulação
Método não supervisionado
Missing data
Multivariate statistics
Simulation study
Unsupervised method
topic Dados faltantes
Estatística multivariada
Estudo de simulação
Método não supervisionado
Missing data
Multivariate statistics
Simulation study
Unsupervised method
description Multivariate statistics studies the relation between a set of random variables and how to analyze them simultaneously. In Multivariate Statistics, archetypes are extreme elements capable of rewriting all observations of a sample, or population, by means of linear combinations. Through the Archetypal Analysis (AA), a multivariate technique that aims to reduce the dimensionality of observations, it is possible to find and select their archetypes, which are convex combinations of the data. AA can be applied in several areas of knowledge and with different uses of archetypes. On this thesis we proposed two different uses of the AA in multivariate contexts: as a sample augmentation method and as an imputation method. The first approach was addressed in samples from bivariate correlated normal random variables from different covariance structures and a simulation study was carried out to evaluate three proposed algorithms and compare them to traditional methods. It was observed that regardless of the correlation structure between the variables, it is possible to increase up to 20% of the sample size. The second approach have evaluated the use of archetypes to impute values by Single and Multiple imputation in a multivariate dataset, with simulated missing data. It was also conducted a simulation study to evaluate the proposed methods that were compared to traditional ones too. The results were promising and the imputed values were very similar to the originals. Therefore, in the two approaches discussed in this work the results points out to the ability of the archetypes representing the dataset and so expressing it as a new data or filling up possible missing values satisfactorily.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11134/tde-12112021-114459/
url https://www.teses.usp.br/teses/disponiveis/11/11134/tde-12112021-114459/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258149292081152