Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Viana, Breno Mauricio de Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19072022-164759/
Resumo: Procedural Content Generation (PCG) techniques can be used to automatically generate game content or increase the designers creativity and productivity. Besides, PCG can work as a game feature by providing diverse and targeted content for players. In this context, we tackle the problem of adaptive content orchestration, specifically by exploring how coordinate the generation of levels, missions, and enemies for an Action-Adventure game and different types of players. Thus, the present masters thesis proposes a PCG system to provide adaptive gameplay experiences for different players. Our system is focused on three different game facets, dungeon levels, narratives (missions), and rules (enemies), and it comprises three modules, orchestrator, classifier, and game prototype. The orchestrator module coordinates two algorithms for generating levels and enemies; both apply MAP-Elites to maintain a variety of solutions without losing quality. The level generation approach creates dungeons with enemies (levels facet) and locked-door missions (narratives facet). Next, the enemy generation approach creates enemies with different attributes and behaviors (rules facet). The classifier module receives the players answers to a brief questionnaire regarding their gameplay preferences to categorize players profiles. To adapt the contents, we defined different goals of each generator for each player type. Based on the player type, the orchestrator module appropriately combines the previously generated levels and enemies. We designed the orchestrator to filter and select coherent and good enemies to place in the levels rooms. The game prototype module is where we validate the contents generated by our system and collect data from the players. Our results show that the two MAP-Elites algorithms accurately converge almost the whole population with many executions and cases. The players feedbacks show that they enjoyed the levels played and the enemies faced. Besides, most of them could not indicate that an algorithm created the levels or the enemies. Our system presented positive results for delivering adaptive content properly for different types of players through a simple player profiling process. Thus, we can conclude that our PCG system can generate levels and enemies to entertain different players.
id USP_6066d2d851374603babff39eeb82f228
oai_identifier_str oai:teses.usp.br:tde-19072022-164759
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and EnemiesOrquestrando e Adaptando Níveis de Calabouço, Missões de Portas Fechadas e InimigosAdaptive generationContent orchestrationEnemy generationGeração adaptativaGeração de inimigosGeração de níveisLevel generationMAP-ElitesMAP-ElitesOrquestração de conteúdoProcedural Content Generation (PCG) techniques can be used to automatically generate game content or increase the designers creativity and productivity. Besides, PCG can work as a game feature by providing diverse and targeted content for players. In this context, we tackle the problem of adaptive content orchestration, specifically by exploring how coordinate the generation of levels, missions, and enemies for an Action-Adventure game and different types of players. Thus, the present masters thesis proposes a PCG system to provide adaptive gameplay experiences for different players. Our system is focused on three different game facets, dungeon levels, narratives (missions), and rules (enemies), and it comprises three modules, orchestrator, classifier, and game prototype. The orchestrator module coordinates two algorithms for generating levels and enemies; both apply MAP-Elites to maintain a variety of solutions without losing quality. The level generation approach creates dungeons with enemies (levels facet) and locked-door missions (narratives facet). Next, the enemy generation approach creates enemies with different attributes and behaviors (rules facet). The classifier module receives the players answers to a brief questionnaire regarding their gameplay preferences to categorize players profiles. To adapt the contents, we defined different goals of each generator for each player type. Based on the player type, the orchestrator module appropriately combines the previously generated levels and enemies. We designed the orchestrator to filter and select coherent and good enemies to place in the levels rooms. The game prototype module is where we validate the contents generated by our system and collect data from the players. Our results show that the two MAP-Elites algorithms accurately converge almost the whole population with many executions and cases. The players feedbacks show that they enjoyed the levels played and the enemies faced. Besides, most of them could not indicate that an algorithm created the levels or the enemies. Our system presented positive results for delivering adaptive content properly for different types of players through a simple player profiling process. Thus, we can conclude that our PCG system can generate levels and enemies to entertain different players.Técnicas de Geração Procedural de Conteúdo, ou Procedural Content Generation (PCG), podem ser usadas para gerar automaticamente o conteúdo de jogos ou aumentar a criatividade e a produtividade dos designers. Além disso, PCG pode funcionar como um recurso de jogo, fornecendo conteúdo diversificado e direcionado aos jogadores. Nesse contexto, abordamos o problema da orquestração de conteúdo adaptativo, especificamente explorando como coordenar a geração de níveis, missões e inimigos para um jogo de ação-aventura e diferentes tipos de jogadores. Assim, a presente dissertação de mestrado propõe um sistema de PCG para experiências de jogo com diferentes jogadores. Nosso sistema é focado em três diferentes facetas do jogo, níveis de masmorras, narrativas (missões) e regras (inimigos), e composto por três módulos, orquestrador, classificador e protótipo de jogo. O módulo orquestrador coordena dois algoritmos para gerar níveis e inimigos; ambos aplicam MAP-Elites para manter uma variedade de soluções sem perder qualidade. A abordagem de geração de níveis cria masmorras com inimigos (faceta de níveis) e missões de portas trancadas (faceta de narrativas). Por sua vez, a abordagem de geração de inimigos cria inimigos com diferentes atributos e comportamentos (faceta de regras). Em seguida, o módulo classificador recebe as respostas dos jogadores dadas a um breve questionário sobre suas preferências de jogo para categorizar seus perfis. Para adaptar os conteúdos, definimos objetivos diferentes de cada gerador para cada tipo de jogador. Em seguida, com base no tipo de jogador, o módulo orquestrador combina adequadamente os níveis e inimigos gerados anteriormente. Para isso, projetamos o orquestrador para filtrar e selecionar inimigos coerentes colocados nas salas dos níveis. O módulo de protótipo de jogo é onde validamos os conteúdos gerados pelo nosso sistema e coletamos dados dos jogadores. Nossos resultados mostram que os dois algoritmos MAP-Elites convergem com precisão quase toda a população na maioria das execuções e maioria dos casos. Os feedbacks dos jogadores mostram que gostaram dos níveis que jogaram e dos inimigos que enfrentaram. Além disso, a maioria deles não poderia indicar que um algoritmo criou os níveis ou os inimigos. Nosso sistema apresentou resultados positivos para entregar conteúdo adaptável de forma adequada para diferentes tipos de jogadores, por meio de um processo simples de criação de perfil de jogadores. Assim, podemos concluir que nosso sistema PCG pode gerar níveis e inimigos capazes de entreter diferentes jogadores.Biblioteca Digitais de Teses e Dissertações da USPToledo, Cláudio Fabiano MottaViana, Breno Mauricio de Freitas2022-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-19072022-164759/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-19T20:02:46Zoai:teses.usp.br:tde-19072022-164759Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-19T20:02:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
Orquestrando e Adaptando Níveis de Calabouço, Missões de Portas Fechadas e Inimigos
title Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
spellingShingle Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
Viana, Breno Mauricio de Freitas
Adaptive generation
Content orchestration
Enemy generation
Geração adaptativa
Geração de inimigos
Geração de níveis
Level generation
MAP-Elites
MAP-Elites
Orquestração de conteúdo
title_short Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
title_full Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
title_fullStr Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
title_full_unstemmed Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
title_sort Orchestrating and Adapting of Dungeon Levels, Locked-door Missions, and Enemies
author Viana, Breno Mauricio de Freitas
author_facet Viana, Breno Mauricio de Freitas
author_role author
dc.contributor.none.fl_str_mv Toledo, Cláudio Fabiano Motta
dc.contributor.author.fl_str_mv Viana, Breno Mauricio de Freitas
dc.subject.por.fl_str_mv Adaptive generation
Content orchestration
Enemy generation
Geração adaptativa
Geração de inimigos
Geração de níveis
Level generation
MAP-Elites
MAP-Elites
Orquestração de conteúdo
topic Adaptive generation
Content orchestration
Enemy generation
Geração adaptativa
Geração de inimigos
Geração de níveis
Level generation
MAP-Elites
MAP-Elites
Orquestração de conteúdo
description Procedural Content Generation (PCG) techniques can be used to automatically generate game content or increase the designers creativity and productivity. Besides, PCG can work as a game feature by providing diverse and targeted content for players. In this context, we tackle the problem of adaptive content orchestration, specifically by exploring how coordinate the generation of levels, missions, and enemies for an Action-Adventure game and different types of players. Thus, the present masters thesis proposes a PCG system to provide adaptive gameplay experiences for different players. Our system is focused on three different game facets, dungeon levels, narratives (missions), and rules (enemies), and it comprises three modules, orchestrator, classifier, and game prototype. The orchestrator module coordinates two algorithms for generating levels and enemies; both apply MAP-Elites to maintain a variety of solutions without losing quality. The level generation approach creates dungeons with enemies (levels facet) and locked-door missions (narratives facet). Next, the enemy generation approach creates enemies with different attributes and behaviors (rules facet). The classifier module receives the players answers to a brief questionnaire regarding their gameplay preferences to categorize players profiles. To adapt the contents, we defined different goals of each generator for each player type. Based on the player type, the orchestrator module appropriately combines the previously generated levels and enemies. We designed the orchestrator to filter and select coherent and good enemies to place in the levels rooms. The game prototype module is where we validate the contents generated by our system and collect data from the players. Our results show that the two MAP-Elites algorithms accurately converge almost the whole population with many executions and cases. The players feedbacks show that they enjoyed the levels played and the enemies faced. Besides, most of them could not indicate that an algorithm created the levels or the enemies. Our system presented positive results for delivering adaptive content properly for different types of players through a simple player profiling process. Thus, we can conclude that our PCG system can generate levels and enemies to entertain different players.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19072022-164759/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19072022-164759/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258303258689536