Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental

Detalhes bibliográficos
Ano de defesa: 1996
Autor(a) principal: Piedade, Sônia Maria de Stefano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-161106/
Resumo: O presente estudo teve por objetivo estruturar as análises da variância para os experimentos em quadrado latino com número diferente de observações por unidade experimental. Para a análise consideraram-se, como em SCHEFFÉ (1959), os seguintes modelos lineares: yijkr = μ + αi + βj + tk + eijkr ; yijkr = μ + αi + tk + βj + eijkr ; yijkr = μ + βj + tk + αi + eijkr ; yijkr = μ + tk + αi + βj + eijkr ; (i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ...K; r = 1, 2, ..., nijk) (I = J = K) onde yijkr é o r-ésimo valor observado na unidade experimental referente à i-ésima linha, na j-ésima coluna e no k-ésimo tratamento; μ é uma constante inerente a todas as observações; αi é o efeito da i-ésima linha; βj é o efeito da j-ésima coluna; tk é o efeito do k-ésimo tratamento; eijkr é o erro aleatório atribuído à observação yijkr tal que eijkr ∩ NID (0, σ2e). Discutiram-se os quatro tipos de somas de quadrados fornecidas pelo sistema estatístico SAS e consequentemente, as respectivas hipóteses testadas através delas. Nesse contexto pode-se concluir que o delineamento em quadrado latino mostrou-se robusto ao desbalanceamento, pois é possível testar através do modelo yijkr = μ + α i + βj + tk + eijkr, hipóteses do tipo: H0: t1 = t2 = ... = tk Como o modelo é sem interação e como no caso não há casela vazia, somente as somas de quadrados do tipo I são diferentes das somas de quadrado dos tipos II, III e IV. Ao pesquisador de posse destas informações, cabe escolher quais funções estimáveis são adequadas para representar a hipótese de seu interesse. Apresentou-se um exemplo ilustrativo na área agronômica.
id USP_615c75fda73fb98bd6455fef3e5e2a71
oai_identifier_str oai:teses.usp.br:tde-20210104-161106
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Análise de experimentos em quadrado latino com número diferente de observações por unidade experimentalAnalysis of experiments in latin square design with different number of observations per experimental unitANÁLISE DE VARIÂNCIADELINEAMENTO EXPERIMENTALMODELOS LINEARESO presente estudo teve por objetivo estruturar as análises da variância para os experimentos em quadrado latino com número diferente de observações por unidade experimental. Para a análise consideraram-se, como em SCHEFFÉ (1959), os seguintes modelos lineares: yijkr = μ + αi + βj + tk + eijkr ; yijkr = μ + αi + tk + βj + eijkr ; yijkr = μ + βj + tk + αi + eijkr ; yijkr = μ + tk + αi + βj + eijkr ; (i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ...K; r = 1, 2, ..., nijk) (I = J = K) onde yijkr é o r-ésimo valor observado na unidade experimental referente à i-ésima linha, na j-ésima coluna e no k-ésimo tratamento; μ é uma constante inerente a todas as observações; αi é o efeito da i-ésima linha; βj é o efeito da j-ésima coluna; tk é o efeito do k-ésimo tratamento; eijkr é o erro aleatório atribuído à observação yijkr tal que eijkr ∩ NID (0, σ2e). Discutiram-se os quatro tipos de somas de quadrados fornecidas pelo sistema estatístico SAS e consequentemente, as respectivas hipóteses testadas através delas. Nesse contexto pode-se concluir que o delineamento em quadrado latino mostrou-se robusto ao desbalanceamento, pois é possível testar através do modelo yijkr = μ + α i + βj + tk + eijkr, hipóteses do tipo: H0: t1 = t2 = ... = tk Como o modelo é sem interação e como no caso não há casela vazia, somente as somas de quadrados do tipo I são diferentes das somas de quadrado dos tipos II, III e IV. Ao pesquisador de posse destas informações, cabe escolher quais funções estimáveis são adequadas para representar a hipótese de seu interesse. Apresentou-se um exemplo ilustrativo na área agronômica.The aim of the present study was to develop the structures of analysis of variance for latin square designs with different number of observations in each experimental unit. For the analysis the linear models considered, as in SCHEFFÉ (1959), were: yijkr = μ + αi + βj + tk + eijkr ; yijkr = μ + αi + tk + βj + eijkr ; yijkr = μ + βj + tk + αi + eijkr ; yijkr = μ + tk + αi + βj + eijkr ; (i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ...K; r = 1, 2, ..., nijk) (I = J = K) where yijkr is the r-th observed value in the i-th row, j-th columm and k-th treatment; μ is the effect of the i-th row; βj is the effect of the j-th columm; tk is the effect of k-th treatment; eijkr is the random error inherent to yijkr observation, eijkr ∩ NID (0, σ2e). Four types of sums of squares and the associated hypothesis tested given by the statistical software SAS were discussed. It was possible to see that the latin square design is robust to unbalancing because it is possible through the model yijkr = μ + αi + βj + tk + eijkr to test hypothesis of the type H0: t1 = t2 = ... = tk. As the modeI is without interaction and there is no empty cell, only the type I sum of squares is different from types lI, III and IV. The choice of which case and therefore which estimable function to use will depend on it interpretability and on the hypothesis of the researcher interest. An illustrative example in agronomic area was presented.Biblioteca Digitais de Teses e Dissertações da USPCampos, Humberto dePiedade, Sônia Maria de Stefano1996-03-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-161106/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-01-07T22:25:12Zoai:teses.usp.br:tde-20210104-161106Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-01-07T22:25:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
Analysis of experiments in latin square design with different number of observations per experimental unit
title Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
spellingShingle Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
Piedade, Sônia Maria de Stefano
ANÁLISE DE VARIÂNCIA
DELINEAMENTO EXPERIMENTAL
MODELOS LINEARES
title_short Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
title_full Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
title_fullStr Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
title_full_unstemmed Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
title_sort Análise de experimentos em quadrado latino com número diferente de observações por unidade experimental
author Piedade, Sônia Maria de Stefano
author_facet Piedade, Sônia Maria de Stefano
author_role author
dc.contributor.none.fl_str_mv Campos, Humberto de
dc.contributor.author.fl_str_mv Piedade, Sônia Maria de Stefano
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv ANÁLISE DE VARIÂNCIA
DELINEAMENTO EXPERIMENTAL
MODELOS LINEARES
topic ANÁLISE DE VARIÂNCIA
DELINEAMENTO EXPERIMENTAL
MODELOS LINEARES
description O presente estudo teve por objetivo estruturar as análises da variância para os experimentos em quadrado latino com número diferente de observações por unidade experimental. Para a análise consideraram-se, como em SCHEFFÉ (1959), os seguintes modelos lineares: yijkr = μ + αi + βj + tk + eijkr ; yijkr = μ + αi + tk + βj + eijkr ; yijkr = μ + βj + tk + αi + eijkr ; yijkr = μ + tk + αi + βj + eijkr ; (i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ...K; r = 1, 2, ..., nijk) (I = J = K) onde yijkr é o r-ésimo valor observado na unidade experimental referente à i-ésima linha, na j-ésima coluna e no k-ésimo tratamento; μ é uma constante inerente a todas as observações; αi é o efeito da i-ésima linha; βj é o efeito da j-ésima coluna; tk é o efeito do k-ésimo tratamento; eijkr é o erro aleatório atribuído à observação yijkr tal que eijkr ∩ NID (0, σ2e). Discutiram-se os quatro tipos de somas de quadrados fornecidas pelo sistema estatístico SAS e consequentemente, as respectivas hipóteses testadas através delas. Nesse contexto pode-se concluir que o delineamento em quadrado latino mostrou-se robusto ao desbalanceamento, pois é possível testar através do modelo yijkr = μ + α i + βj + tk + eijkr, hipóteses do tipo: H0: t1 = t2 = ... = tk Como o modelo é sem interação e como no caso não há casela vazia, somente as somas de quadrados do tipo I são diferentes das somas de quadrado dos tipos II, III e IV. Ao pesquisador de posse destas informações, cabe escolher quais funções estimáveis são adequadas para representar a hipótese de seu interesse. Apresentou-se um exemplo ilustrativo na área agronômica.
publishDate 1996
dc.date.none.fl_str_mv 1996-03-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-161106/
url https://teses.usp.br/teses/disponiveis/11/11134/tde-20210104-161106/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258328831361024