Artificial data generation pipeline for visual grasping deep learning

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Casteluci, Larissa Cassador
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18162/tde-16062023-112737/
Resumo: The rise of deep learning algorithms in academia has changed the area of robotic grasping. Before, methods involving analytical analysis and grasping modelling were the most common strategies. However, deep learning strategies have become recently more prevalent. They have presented incredible results in the last decade. However, they present disadvantages of their own. A major drawback is that they require large amounts of representative data to be trained on. For specific applications, a specific dataset with custom targets is required. But generating data for robotic grasping is not an easy task. It is more challenging than creating datasets for classification or object detection problems, since it requires lab experiments. Manual acquisition of this data can be time-consuming. In this context, the generation of synthetic data using rendering and simulation tools can be a viable solution. This strategy, on the other hand, also has its own set of problems. The most relevant is the reality gap, i.e. the intrinsic difference between reality and simulated data. There are a few techniques developed to mitigate this problem, such as domain randomization and photorealistic data. We provide a tool that allows the creation of datasets for robotic grasping for a configurable set of targets. We compare in a real life scenario a neural network trained on this custom dataset and compare results with the same network trained on a state-of-the-art dataset and show that our tool creates viable datasets that neural networks can be trained on and produce suitable results.
id USP_624f257dbc291f285f07c4f75a352320
oai_identifier_str oai:teses.usp.br:tde-16062023-112737
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Artificial data generation pipeline for visual grasping deep learningPipeline para geração de dados artificiais para treinamento de Redes de Preensão Robóticaaprendizagem profundacomputer visiondados sintéticosdeep learningdetecção de preensão com visãosynthetic datavisão computacionalvisual grasp detectionThe rise of deep learning algorithms in academia has changed the area of robotic grasping. Before, methods involving analytical analysis and grasping modelling were the most common strategies. However, deep learning strategies have become recently more prevalent. They have presented incredible results in the last decade. However, they present disadvantages of their own. A major drawback is that they require large amounts of representative data to be trained on. For specific applications, a specific dataset with custom targets is required. But generating data for robotic grasping is not an easy task. It is more challenging than creating datasets for classification or object detection problems, since it requires lab experiments. Manual acquisition of this data can be time-consuming. In this context, the generation of synthetic data using rendering and simulation tools can be a viable solution. This strategy, on the other hand, also has its own set of problems. The most relevant is the reality gap, i.e. the intrinsic difference between reality and simulated data. There are a few techniques developed to mitigate this problem, such as domain randomization and photorealistic data. We provide a tool that allows the creation of datasets for robotic grasping for a configurable set of targets. We compare in a real life scenario a neural network trained on this custom dataset and compare results with the same network trained on a state-of-the-art dataset and show that our tool creates viable datasets that neural networks can be trained on and produce suitable results.O advento de algoritmos de aprendizagem profunda mudou o panorama da área de preensão robótica. Se antes a área se focava em métodos analíticos e modelagem de preensão para planejar e analisar a qualidade de preensão de objetos, hoje esse encargo recaí sobre os algoritmos de inteligência artificial. Embora esses algoritmos tenham apresentado resultados surpreendentes na última década, eles também possuem desvantagens se comparados a técnicas de modelagem de preensão. A principal desvantagem é a necessidade de treinamento da rede em um conjunto de dados amplo e representativo do problema. Para aplicações especializadas, pode ser necessário um dataset customizado com objetos específicos. Mas a criação desses datasets não é uma tarefa fácil. Para a área de preensão robótica, a geração desses dados é mais complexa que a geração de conjuntos de dados para classificação e detecção de objetos, uma vez que requer experimentos em laboratórios. A obtenção desses dados de forma manual pode ser demorada e ser suscetível a erros. Nesse contexto, a geração de dados de forma artificial, por renderização de dados e simulação, se torna uma alternativa viável para geração de dados para treinamento de redes. Por sua vez, essa estratégia também apresenta os seus problemas. A principal entre elas é denominada de reality gap. Ou seja, é a diferença que existe em dados simulados e dados obtidos na realidade. Tentando mitigar esse efeito, foram elaboradas técnicas para compensar essa diferença. Abordagens relevantes nesse sentido são a geração de dados foto realísticos e a domain randomization. Nesse trabalho, é disponibilizada uma ferramenta para a criação de datasets de preensão robótica com a configuração de objetos. Foram realizados experimentos que comparam os resultados de uma rede neural treinada nesse dataset customizado com a mesma rede treinada em um dataset estado da arte em ambiente de laboratório. Os resultados demostram que a ferramenta é capaz de gerar datasets viáveis para o treinamento de redes neurais, e que elas produzem resultados viáveis.Biblioteca Digitais de Teses e Dissertações da USPMagalhães, Daniel VarelaCasteluci, Larissa Cassador2023-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18162/tde-16062023-112737/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-06-19T12:24:30Zoai:teses.usp.br:tde-16062023-112737Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-19T12:24:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Artificial data generation pipeline for visual grasping deep learning
Pipeline para geração de dados artificiais para treinamento de Redes de Preensão Robótica
title Artificial data generation pipeline for visual grasping deep learning
spellingShingle Artificial data generation pipeline for visual grasping deep learning
Casteluci, Larissa Cassador
aprendizagem profunda
computer vision
dados sintéticos
deep learning
detecção de preensão com visão
synthetic data
visão computacional
visual grasp detection
title_short Artificial data generation pipeline for visual grasping deep learning
title_full Artificial data generation pipeline for visual grasping deep learning
title_fullStr Artificial data generation pipeline for visual grasping deep learning
title_full_unstemmed Artificial data generation pipeline for visual grasping deep learning
title_sort Artificial data generation pipeline for visual grasping deep learning
author Casteluci, Larissa Cassador
author_facet Casteluci, Larissa Cassador
author_role author
dc.contributor.none.fl_str_mv Magalhães, Daniel Varela
dc.contributor.author.fl_str_mv Casteluci, Larissa Cassador
dc.subject.por.fl_str_mv aprendizagem profunda
computer vision
dados sintéticos
deep learning
detecção de preensão com visão
synthetic data
visão computacional
visual grasp detection
topic aprendizagem profunda
computer vision
dados sintéticos
deep learning
detecção de preensão com visão
synthetic data
visão computacional
visual grasp detection
description The rise of deep learning algorithms in academia has changed the area of robotic grasping. Before, methods involving analytical analysis and grasping modelling were the most common strategies. However, deep learning strategies have become recently more prevalent. They have presented incredible results in the last decade. However, they present disadvantages of their own. A major drawback is that they require large amounts of representative data to be trained on. For specific applications, a specific dataset with custom targets is required. But generating data for robotic grasping is not an easy task. It is more challenging than creating datasets for classification or object detection problems, since it requires lab experiments. Manual acquisition of this data can be time-consuming. In this context, the generation of synthetic data using rendering and simulation tools can be a viable solution. This strategy, on the other hand, also has its own set of problems. The most relevant is the reality gap, i.e. the intrinsic difference between reality and simulated data. There are a few techniques developed to mitigate this problem, such as domain randomization and photorealistic data. We provide a tool that allows the creation of datasets for robotic grasping for a configurable set of targets. We compare in a real life scenario a neural network trained on this custom dataset and compare results with the same network trained on a state-of-the-art dataset and show that our tool creates viable datasets that neural networks can be trained on and produce suitable results.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18162/tde-16062023-112737/
url https://www.teses.usp.br/teses/disponiveis/18/18162/tde-16062023-112737/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258218524311552