Item response theory: autoencoders

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Tabak, Gabriel Couto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17032025-163109/
Resumo: Autoencoders, a method of unsupervised learning, aim to capture lower-dimensional latent spaces. They consist of two interconnected neural networks: an encoder that condenses information into a compact representation and a decoder that reconstructs the original data from these compressed features. They are versatile tools for discovering latent representations in various contexts. This dissertation introduces and explores the application of autoencoders within Item Response Theory (IRT), proposing specific models that correspond to the logistic two-parameter model and the graded response model. The inherent flexibility of neural networks is expected to provide distinct advantages in the estimation of IRT parameters. Our study focuses on their efficacy in parameter retrieval comparing normal and non-normal distributions. To maintain parameter interpretability, we have fixed the decoders architecture for each model, and to address the issue of model identifiability, we have proposed two distinct constraints within the decoder. Our initial inquiry examined whether certain neural network architectures for the encoder (specific configurations of neurons and layers) were particularly effective using an evolutionary neural architecture search. Although no single architecture emerged as universally superior, the imposed decoder constraints proved sufficient for consistent parameter estimation across various structures. Nonetheless, challenges appeared in scenarios characterized by some adversity. Items with low discrimination or skewed response distributions (excessive zeros or ones) impact the precision of latent trait retrieval. Comparative analysis of the mean bias in parameter retrieval revealed that while our autoencoder approach aligns with other methods to estimate IRT parameters, it does not surpass them in most metrics. Notably, in cases of non-normality, our method demonstrated robust estimation capabilities. One advantage of our proposed method was observed in the extremities of the latent trait distribution, where the autoencoder exhibited bias around zero. This contrasts with other methods that tended to exhibit positive bias in the lower tail and negative bias in the upper tail of the distribution.
id USP_625f7a354d79eadfc4ac0a97d5c9e286
oai_identifier_str oai:teses.usp.br:tde-17032025-163109
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Item response theory: autoencodersTeoria de resposta ao item: autoencodersAlgoritmo evolutivoAutoencodersAutoencodersDistribuições não normaisEvolutionary algorithmItem response theoryNeural architecture searchNeural architecture searchNeural networkNon-normal distributionsRedes neuraisSimulaçõesSimulationsTeoria de resposta ao itemAutoencoders, a method of unsupervised learning, aim to capture lower-dimensional latent spaces. They consist of two interconnected neural networks: an encoder that condenses information into a compact representation and a decoder that reconstructs the original data from these compressed features. They are versatile tools for discovering latent representations in various contexts. This dissertation introduces and explores the application of autoencoders within Item Response Theory (IRT), proposing specific models that correspond to the logistic two-parameter model and the graded response model. The inherent flexibility of neural networks is expected to provide distinct advantages in the estimation of IRT parameters. Our study focuses on their efficacy in parameter retrieval comparing normal and non-normal distributions. To maintain parameter interpretability, we have fixed the decoders architecture for each model, and to address the issue of model identifiability, we have proposed two distinct constraints within the decoder. Our initial inquiry examined whether certain neural network architectures for the encoder (specific configurations of neurons and layers) were particularly effective using an evolutionary neural architecture search. Although no single architecture emerged as universally superior, the imposed decoder constraints proved sufficient for consistent parameter estimation across various structures. Nonetheless, challenges appeared in scenarios characterized by some adversity. Items with low discrimination or skewed response distributions (excessive zeros or ones) impact the precision of latent trait retrieval. Comparative analysis of the mean bias in parameter retrieval revealed that while our autoencoder approach aligns with other methods to estimate IRT parameters, it does not surpass them in most metrics. Notably, in cases of non-normality, our method demonstrated robust estimation capabilities. One advantage of our proposed method was observed in the extremities of the latent trait distribution, where the autoencoder exhibited bias around zero. This contrasts with other methods that tended to exhibit positive bias in the lower tail and negative bias in the upper tail of the distribution.Autoencoders, um método de aprendizado não supervisionado, têm como objetivo encontrar espaços latentes de dimensões menores. Eles consistem em duas redes neurais interconectadas: um encoder que condensa a informação em uma representação mais compacta e um decoder que reconstrói a informação original a partir dessa representação compacta. Eles são uma ferramenta versátil para descobrir representações latentes em vários contextos. Esta dissertação introduz e explora a aplicação de autoencoders na Teoria de Resposta ao Item (TRI), propondo modelos específicos que correspondem ao modelo de dois parâmetros e ao modelo de resposta gradual. Espera-se que este método ofereça algumas vantagens, dada a flexibilidade inerente das redes neurais. Nosso estudo focou na eficácia da recuperação dos parâmetros com comparações entre distribuições normais e não normais. Para manter a interpretabilidade dos parâmetros, fixamos a arquitetura do decoder em cada modelo. Para lidar com a questão da identificabilidade, propusemos duas restrições diferentes no decoder. Nossos questionamentos iniciais examinaram se certas arquiteturas do enconder (configurações específicas de neurônios e camadas) se destacavam usando um algoritmo evolutivo de neural architecture search. Embora nenhuma arquitetura tenha se mostrado superior de forma universal, as restrições impostas se provaram suficientes para garantir a consistência da estimação entre diferentes arquiteturas. Contudo, desafios surgiram quando o método foi avaliado em cenários com alguma adversidade. Itens com baixa discriminação ou casos com respostas assimétricas (excesso de zeros ou uns) impactaram a precisão na estimação dos traços latentes. Análises comparativas do viés médio na recuperação dos parâmetros mostraram que, embora o autoencoder se alinhe com outros métodos de estimação de parâmetros de modelos da TRI, ele não conseguiu superá-los na maioria das métricas. Notavelmente, em casos de não normalidade, o autoencoder demonstrou robustez na estimação. Uma vantagem do método proposto é que, nas extremidades da distribuição dos traços latentes, o autoencoder exibiu um viés próximo de zero, contrastando com outros métodos que apresentaram viés positivo na cauda esquerda e negativo na direita.Biblioteca Digitais de Teses e Dissertações da USPCúri, MarianaMolenaar, DylanTabak, Gabriel Couto2024-10-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-17032025-163109/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-18T16:19:02Zoai:teses.usp.br:tde-17032025-163109Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-18T16:19:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Item response theory: autoencoders
Teoria de resposta ao item: autoencoders
title Item response theory: autoencoders
spellingShingle Item response theory: autoencoders
Tabak, Gabriel Couto
Algoritmo evolutivo
Autoencoders
Autoencoders
Distribuições não normais
Evolutionary algorithm
Item response theory
Neural architecture search
Neural architecture search
Neural network
Non-normal distributions
Redes neurais
Simulações
Simulations
Teoria de resposta ao item
title_short Item response theory: autoencoders
title_full Item response theory: autoencoders
title_fullStr Item response theory: autoencoders
title_full_unstemmed Item response theory: autoencoders
title_sort Item response theory: autoencoders
author Tabak, Gabriel Couto
author_facet Tabak, Gabriel Couto
author_role author
dc.contributor.none.fl_str_mv Cúri, Mariana
Molenaar, Dylan
dc.contributor.author.fl_str_mv Tabak, Gabriel Couto
dc.subject.por.fl_str_mv Algoritmo evolutivo
Autoencoders
Autoencoders
Distribuições não normais
Evolutionary algorithm
Item response theory
Neural architecture search
Neural architecture search
Neural network
Non-normal distributions
Redes neurais
Simulações
Simulations
Teoria de resposta ao item
topic Algoritmo evolutivo
Autoencoders
Autoencoders
Distribuições não normais
Evolutionary algorithm
Item response theory
Neural architecture search
Neural architecture search
Neural network
Non-normal distributions
Redes neurais
Simulações
Simulations
Teoria de resposta ao item
description Autoencoders, a method of unsupervised learning, aim to capture lower-dimensional latent spaces. They consist of two interconnected neural networks: an encoder that condenses information into a compact representation and a decoder that reconstructs the original data from these compressed features. They are versatile tools for discovering latent representations in various contexts. This dissertation introduces and explores the application of autoencoders within Item Response Theory (IRT), proposing specific models that correspond to the logistic two-parameter model and the graded response model. The inherent flexibility of neural networks is expected to provide distinct advantages in the estimation of IRT parameters. Our study focuses on their efficacy in parameter retrieval comparing normal and non-normal distributions. To maintain parameter interpretability, we have fixed the decoders architecture for each model, and to address the issue of model identifiability, we have proposed two distinct constraints within the decoder. Our initial inquiry examined whether certain neural network architectures for the encoder (specific configurations of neurons and layers) were particularly effective using an evolutionary neural architecture search. Although no single architecture emerged as universally superior, the imposed decoder constraints proved sufficient for consistent parameter estimation across various structures. Nonetheless, challenges appeared in scenarios characterized by some adversity. Items with low discrimination or skewed response distributions (excessive zeros or ones) impact the precision of latent trait retrieval. Comparative analysis of the mean bias in parameter retrieval revealed that while our autoencoder approach aligns with other methods to estimate IRT parameters, it does not surpass them in most metrics. Notably, in cases of non-normality, our method demonstrated robust estimation capabilities. One advantage of our proposed method was observed in the extremities of the latent trait distribution, where the autoencoder exhibited bias around zero. This contrasts with other methods that tended to exhibit positive bias in the lower tail and negative bias in the upper tail of the distribution.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17032025-163109/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17032025-163109/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839148415909888