ReSilienT aiR taxis architectUre for Smart cities
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/ |
Resumo: | With the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature. |
| id |
USP_64a41d3892483ef19fc84cf6a4b8ee99 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-17042025-100005 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
ReSilienT aiR taxis architectUre for Smart citiesArquitetura de táxis aéreos resiliente para cidades inteligentesAir TaxiCarros VoadoresCidades InteligenteseVTOLSafetySecuritySegurançaSmart citiesTáxi AéreoWith the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature.Com o crescimento da população mundial e a aceleração da urbanização, a necessidade de soluções sustentáveis para a mobilidade urbana torna-se cada vez mais premente. Nesse contexto, as cidades inteligentes promovem o desenvolvimento econômico e social por meio de soluções inovadoras para diversos problemas enfrentados pela sociedade, como o acesso a serviços essenciais, mobilidade, consumo excessivo de energia, falhas de segurança e a implementação de transporte aéreo urbano eficiente e de alta velocidade. No âmbito da mobilidade urbana, a principal aposta reside na utilização de veículos aéreos. Diferentemente dos sistemas de transporte tradicionais, como carros ou trens, limitados pelo espaço viário terrestre, os veículos voadores, tais como, drones e táxis aéreo, não competem por espaço no tráfego terrestre. Eles possuem maior grau de liberdade espacial e temporal, percursos mais curtos e, consequentemente, proporcionam menos estresse aos seus usuários. Grandes empresas e pesquisadores ao redor do mundo estão desenvolvendo diferentes arquiteturas, algoritmos e técnicas para viabilizar o transporte por táxis aéreos, visando atender uma parcela da população com segurança e autonomia. Contudo, uma das principais questões que dificultam a disseminação dos táxis aéreos é a segurança operacional e a proteção contra ameaças (safety e security), pois uma simples falha pode resultar na perda de bens de alto valor, do próprio veículo e, sobretudo, causar lesões a vidas humanas, incluindo fatalidades. Apesar dos esforços, a literatura ainda é específica e limitada no que diz respeito à segurança nesse contexto. Diante disso, o objetivo principal desta tese é apresentar os resultados e a definição da ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), uma solução inovadora de segurança para táxis aéreos, projetada para ser resiliente, robusta e tolerante a falhas. O STRAUSS tem como propósito assegurar uma operação contínua e segura, mesmo sob condições adversas, sejam elas decorrentes de eventos intencionais ou acidentais. A inovação do STRAUSS reside na integração de mecanismos que diagnosticam falhas e ataques, permitem a tomada de decisões em tempo real para mitigar riscos e restaurar a aeronave, adotando a melhor estratégia possível diante de situações inesperadas. A arquitetura STRAUSS compreende quatro componentes principais: três plataformas e uma interface, cada uma com objetivos e funcionalidades distintas. Esses componentes são denominados Plataforma de Diagnóstico Jetson, Plataforma de Decisão Jetson, Plataforma de Resiliência e Interface Jetson. Cada plataforma foi cuidadosamente projetada para trabalhar em um ambiente urbano denso, garantindo altos níveis de segurança e eficiência operacional para táxis aéreos em cidades inteligentes, para os passageiros e para o meio ambiente. Diferentes estudos dos foram conduzidos para validar a eficácia da arquitetura STRAUSS, alcançando resultados expressivos em todas as plataformas, por exemplo, uma acurácia 21% superior no diagnóstico de falhas e ataques em comparação com estudos recentes da literaturaBiblioteca Digitais de Teses e Dissertações da USPBranco, Kalinka Regina Lucas Jaquie CasteloFerrão, Isadora Garcia2024-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-17T13:29:01Zoai:teses.usp.br:tde-17042025-100005Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-17T13:29:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
ReSilienT aiR taxis architectUre for Smart cities Arquitetura de táxis aéreos resiliente para cidades inteligentes |
| title |
ReSilienT aiR taxis architectUre for Smart cities |
| spellingShingle |
ReSilienT aiR taxis architectUre for Smart cities Ferrão, Isadora Garcia Air Taxi Carros Voadores Cidades Inteligentes eVTOL Safety Security Segurança Smart cities Táxi Aéreo |
| title_short |
ReSilienT aiR taxis architectUre for Smart cities |
| title_full |
ReSilienT aiR taxis architectUre for Smart cities |
| title_fullStr |
ReSilienT aiR taxis architectUre for Smart cities |
| title_full_unstemmed |
ReSilienT aiR taxis architectUre for Smart cities |
| title_sort |
ReSilienT aiR taxis architectUre for Smart cities |
| author |
Ferrão, Isadora Garcia |
| author_facet |
Ferrão, Isadora Garcia |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Branco, Kalinka Regina Lucas Jaquie Castelo |
| dc.contributor.author.fl_str_mv |
Ferrão, Isadora Garcia |
| dc.subject.por.fl_str_mv |
Air Taxi Carros Voadores Cidades Inteligentes eVTOL Safety Security Segurança Smart cities Táxi Aéreo |
| topic |
Air Taxi Carros Voadores Cidades Inteligentes eVTOL Safety Security Segurança Smart cities Táxi Aéreo |
| description |
With the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839148456804352 |