ReSilienT aiR taxis architectUre for Smart cities

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Ferrão, Isadora Garcia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/
Resumo: With the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature.
id USP_64a41d3892483ef19fc84cf6a4b8ee99
oai_identifier_str oai:teses.usp.br:tde-17042025-100005
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling ReSilienT aiR taxis architectUre for Smart citiesArquitetura de táxis aéreos resiliente para cidades inteligentesAir TaxiCarros VoadoresCidades InteligenteseVTOLSafetySecuritySegurançaSmart citiesTáxi AéreoWith the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature.Com o crescimento da população mundial e a aceleração da urbanização, a necessidade de soluções sustentáveis para a mobilidade urbana torna-se cada vez mais premente. Nesse contexto, as cidades inteligentes promovem o desenvolvimento econômico e social por meio de soluções inovadoras para diversos problemas enfrentados pela sociedade, como o acesso a serviços essenciais, mobilidade, consumo excessivo de energia, falhas de segurança e a implementação de transporte aéreo urbano eficiente e de alta velocidade. No âmbito da mobilidade urbana, a principal aposta reside na utilização de veículos aéreos. Diferentemente dos sistemas de transporte tradicionais, como carros ou trens, limitados pelo espaço viário terrestre, os veículos voadores, tais como, drones e táxis aéreo, não competem por espaço no tráfego terrestre. Eles possuem maior grau de liberdade espacial e temporal, percursos mais curtos e, consequentemente, proporcionam menos estresse aos seus usuários. Grandes empresas e pesquisadores ao redor do mundo estão desenvolvendo diferentes arquiteturas, algoritmos e técnicas para viabilizar o transporte por táxis aéreos, visando atender uma parcela da população com segurança e autonomia. Contudo, uma das principais questões que dificultam a disseminação dos táxis aéreos é a segurança operacional e a proteção contra ameaças (safety e security), pois uma simples falha pode resultar na perda de bens de alto valor, do próprio veículo e, sobretudo, causar lesões a vidas humanas, incluindo fatalidades. Apesar dos esforços, a literatura ainda é específica e limitada no que diz respeito à segurança nesse contexto. Diante disso, o objetivo principal desta tese é apresentar os resultados e a definição da ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), uma solução inovadora de segurança para táxis aéreos, projetada para ser resiliente, robusta e tolerante a falhas. O STRAUSS tem como propósito assegurar uma operação contínua e segura, mesmo sob condições adversas, sejam elas decorrentes de eventos intencionais ou acidentais. A inovação do STRAUSS reside na integração de mecanismos que diagnosticam falhas e ataques, permitem a tomada de decisões em tempo real para mitigar riscos e restaurar a aeronave, adotando a melhor estratégia possível diante de situações inesperadas. A arquitetura STRAUSS compreende quatro componentes principais: três plataformas e uma interface, cada uma com objetivos e funcionalidades distintas. Esses componentes são denominados Plataforma de Diagnóstico Jetson, Plataforma de Decisão Jetson, Plataforma de Resiliência e Interface Jetson. Cada plataforma foi cuidadosamente projetada para trabalhar em um ambiente urbano denso, garantindo altos níveis de segurança e eficiência operacional para táxis aéreos em cidades inteligentes, para os passageiros e para o meio ambiente. Diferentes estudos dos foram conduzidos para validar a eficácia da arquitetura STRAUSS, alcançando resultados expressivos em todas as plataformas, por exemplo, uma acurácia 21% superior no diagnóstico de falhas e ataques em comparação com estudos recentes da literaturaBiblioteca Digitais de Teses e Dissertações da USPBranco, Kalinka Regina Lucas Jaquie CasteloFerrão, Isadora Garcia2024-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-17T13:29:01Zoai:teses.usp.br:tde-17042025-100005Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-17T13:29:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv ReSilienT aiR taxis architectUre for Smart cities
Arquitetura de táxis aéreos resiliente para cidades inteligentes
title ReSilienT aiR taxis architectUre for Smart cities
spellingShingle ReSilienT aiR taxis architectUre for Smart cities
Ferrão, Isadora Garcia
Air Taxi
Carros Voadores
Cidades Inteligentes
eVTOL
Safety
Security
Segurança
Smart cities
Táxi Aéreo
title_short ReSilienT aiR taxis architectUre for Smart cities
title_full ReSilienT aiR taxis architectUre for Smart cities
title_fullStr ReSilienT aiR taxis architectUre for Smart cities
title_full_unstemmed ReSilienT aiR taxis architectUre for Smart cities
title_sort ReSilienT aiR taxis architectUre for Smart cities
author Ferrão, Isadora Garcia
author_facet Ferrão, Isadora Garcia
author_role author
dc.contributor.none.fl_str_mv Branco, Kalinka Regina Lucas Jaquie Castelo
dc.contributor.author.fl_str_mv Ferrão, Isadora Garcia
dc.subject.por.fl_str_mv Air Taxi
Carros Voadores
Cidades Inteligentes
eVTOL
Safety
Security
Segurança
Smart cities
Táxi Aéreo
topic Air Taxi
Carros Voadores
Cidades Inteligentes
eVTOL
Safety
Security
Segurança
Smart cities
Táxi Aéreo
description With the growth of the world population and the acceleration of urbanization, the need for sustainable solutions for urban mobility becomes increasingly pressing. In this context, smart cities promote economic and social development through innovative solutions to various problems faced by society, such as access to essential services, mobility, excessive energy consumption, security failures, and the implementation of efficient and high-speed urban air transportation. In the realm of urban mobility, the main bet lies in the use of aerial vehicles. Unlike traditional transportation systems, such as cars or trains, which are limited by terrestrial road space, flying vehicles, such as drones and air taxis, do not compete for space in terrestrial traffic. They have a greater degree of spatial and temporal freedom, shorter routes, and consequently, less stress to their users. Large companies and researchers worldwide are developing different architectures, algorithms, and techniques to enable air taxi transportation, aiming to serve a portion of the population with safety and autonomy. However, one of the main issues that hinder the dissemination of air taxis is operational safety and protection against threats (safety and security), as a simple failure can result in the loss of high-value assets, the vehicle itself, and above all, cause injuries to human lives, including fatalities. Despite efforts, the literature on safety in this context is still specific and limited. Therefore, the main objective of this thesis is to present the results and the definition of the ReSilienT aiR taxis architectUre for Smart cities (STRAUSS), an innovative safety solution for air taxis, designed to be resilient, robust, and fault-tolerant. STRAUSS aims to ensure continuous and safe operation, even under adverse conditions, whether they are due to intentional or accidental events. The innovation of STRAUSS lies in integrating mechanisms that diagnose failures and attacks, allowing real-time decision-making to mitigate risks and restore the aircraft, and adopting the best possible strategy in unexpected situations. The STRAUSS architecture comprises four main components: three platforms and an interface, each with distinct objectives and functionalities. These components are named Jetson Diagnosis Platform, Jetson Decision Platform, Resilience Platform, and Jetson Interface. Each platform was carefully designed to work in a dense urban environment, ensuring high safety, security, and operational efficiency for air taxis in smart cities, for passengers, and for the environment. Different studies have been conducted to validate the effectiveness of the STRAUSS architecture, achieving significant results on all platforms, for example, a 21% higher accuracy in diagnosing faults and attacks compared to recent studies in the literature.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-17042025-100005/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839148456804352