Learning spatial inequalities: an approach to support transportation planning.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Gay, Juliana Siqueira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3138/tde-03052018-103817/
Resumo: Part of the literature of transportation planning understand transportation infrastructure as a mean of distributing people and opportunities across the territory. Therefore, the spatial inequalities become a relevant issue in transportation and land use planning. To meet the challenge of evaluating the heterogeneity of transportation provision and land use in the urban environment, this work aims at identifying and describing patterns hidden the distribution of accessibility to different urban facilities and socioeconomic information using Machine Learning (ML) techniques to inform the decision making of transportation plans. To feature the current consideration of spatial inequalities measures in the practice of transportation planning in Brazil, nine mobility plans were reviewed. For investigating the potentialities and restrictions of ML application, unsupervised and supervised analysis of income and accessibility indicators to health, education and leisure were performed. The data of the São Paulo municipality from the years of 2000 and 2010 was explored. The analyzed plans do not present measures for evaluating spatial inequalities. It is possible to identify that the low-income population has low accessibility to all facilities, especially, hospital and cultural centers. The east zone of the city presents a low-income group with intermediate level to public schools and sports centers, revealing the heterogeneity in regions out of the city center. Finally, a framework is proposed to incorporate spatial inequalities by using ML techniques in transportation plans.
id USP_666fa2cd106d2f2e7bdd95dc2960c541
oai_identifier_str oai:teses.usp.br:tde-03052018-103817
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Learning spatial inequalities: an approach to support transportation planning.Aprendizagem sobre desigualdades espaciais: uma abordagem para suporte ao planejamento de transportes.AccessibilityDesigualdadesEquidadeMachine learningMobilidade urbanaMobility plansPlanejamento de transportesSistemas de transportesTransport systemsUso do soloPart of the literature of transportation planning understand transportation infrastructure as a mean of distributing people and opportunities across the territory. Therefore, the spatial inequalities become a relevant issue in transportation and land use planning. To meet the challenge of evaluating the heterogeneity of transportation provision and land use in the urban environment, this work aims at identifying and describing patterns hidden the distribution of accessibility to different urban facilities and socioeconomic information using Machine Learning (ML) techniques to inform the decision making of transportation plans. To feature the current consideration of spatial inequalities measures in the practice of transportation planning in Brazil, nine mobility plans were reviewed. For investigating the potentialities and restrictions of ML application, unsupervised and supervised analysis of income and accessibility indicators to health, education and leisure were performed. The data of the São Paulo municipality from the years of 2000 and 2010 was explored. The analyzed plans do not present measures for evaluating spatial inequalities. It is possible to identify that the low-income population has low accessibility to all facilities, especially, hospital and cultural centers. The east zone of the city presents a low-income group with intermediate level to public schools and sports centers, revealing the heterogeneity in regions out of the city center. Finally, a framework is proposed to incorporate spatial inequalities by using ML techniques in transportation plans.Parte da literatura de planejamento de transportes conceitua a infraestrutura de transportes como uma forma de distribuir pessoas e oportunidades no território. Portanto, as desigualdades espaciais tornaram-se uma questão relevante a ser endereçada no planejamento de transportes e uso do solo. De maneira a contribuir com o desafio de avaliar desigualdades e sua heterogeneidade no ambiente urbano, esse trabalho tem como objetivo identificar e descrever padrões existentes na distribuição acessibilidade a diferentes equipamentos urbanos e dados socioeconômicos por meio de técnicas de Aprendizagem de Máquina (AM) para informar a tomada de decisão em planos de transportes. De forma a caracterizar a atual consideração de métricas de desigualdades espaciais na prática do planejamento de transportes no Brasil, nove planos de mobilidade foram revisados. Para investigar as potencialidades e restrições da aplicação de AM, análises supervisionadas e não supervisionadas de indicadores de renda e acessibilidade a saúde, educação e lazer foram realizadas. Os dados do município de São Paulo dos anos de 2000 e 2010 foram explorados. Os Planos de Mobilidade analisados não apresentam medidas para avaliação de desigualdades espaciais. Além disso, é possível identificar que a população de baixa renda tem baixa acessibilidade a todos os equipamentos urbanos, especialmente hospitais e centros culturais. A zona leste da cidade apresenta um grupo de baixa renda com nível intermediário de acessibilidade a escolas públicas e centros esportivos, evidenciando a heterogeneidade nas regiões periféricas da cidade. Finalmente, um quadro de referência é proposto para incorporação de técnicas de AM no planejamento de transportes.Biblioteca Digitais de Teses e Dissertações da USPGiannotti, Mariana AbrantesGay, Juliana Siqueira2018-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3138/tde-03052018-103817/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-09-20T19:49:24Zoai:teses.usp.br:tde-03052018-103817Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Learning spatial inequalities: an approach to support transportation planning.
Aprendizagem sobre desigualdades espaciais: uma abordagem para suporte ao planejamento de transportes.
title Learning spatial inequalities: an approach to support transportation planning.
spellingShingle Learning spatial inequalities: an approach to support transportation planning.
Gay, Juliana Siqueira
Accessibility
Desigualdades
Equidade
Machine learning
Mobilidade urbana
Mobility plans
Planejamento de transportes
Sistemas de transportes
Transport systems
Uso do solo
title_short Learning spatial inequalities: an approach to support transportation planning.
title_full Learning spatial inequalities: an approach to support transportation planning.
title_fullStr Learning spatial inequalities: an approach to support transportation planning.
title_full_unstemmed Learning spatial inequalities: an approach to support transportation planning.
title_sort Learning spatial inequalities: an approach to support transportation planning.
author Gay, Juliana Siqueira
author_facet Gay, Juliana Siqueira
author_role author
dc.contributor.none.fl_str_mv Giannotti, Mariana Abrantes
dc.contributor.author.fl_str_mv Gay, Juliana Siqueira
dc.subject.por.fl_str_mv Accessibility
Desigualdades
Equidade
Machine learning
Mobilidade urbana
Mobility plans
Planejamento de transportes
Sistemas de transportes
Transport systems
Uso do solo
topic Accessibility
Desigualdades
Equidade
Machine learning
Mobilidade urbana
Mobility plans
Planejamento de transportes
Sistemas de transportes
Transport systems
Uso do solo
description Part of the literature of transportation planning understand transportation infrastructure as a mean of distributing people and opportunities across the territory. Therefore, the spatial inequalities become a relevant issue in transportation and land use planning. To meet the challenge of evaluating the heterogeneity of transportation provision and land use in the urban environment, this work aims at identifying and describing patterns hidden the distribution of accessibility to different urban facilities and socioeconomic information using Machine Learning (ML) techniques to inform the decision making of transportation plans. To feature the current consideration of spatial inequalities measures in the practice of transportation planning in Brazil, nine mobility plans were reviewed. For investigating the potentialities and restrictions of ML application, unsupervised and supervised analysis of income and accessibility indicators to health, education and leisure were performed. The data of the São Paulo municipality from the years of 2000 and 2010 was explored. The analyzed plans do not present measures for evaluating spatial inequalities. It is possible to identify that the low-income population has low accessibility to all facilities, especially, hospital and cultural centers. The east zone of the city presents a low-income group with intermediate level to public schools and sports centers, revealing the heterogeneity in regions out of the city center. Finally, a framework is proposed to incorporate spatial inequalities by using ML techniques in transportation plans.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3138/tde-03052018-103817/
url http://www.teses.usp.br/teses/disponiveis/3/3138/tde-03052018-103817/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257832433385472