Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Rocha, Bruno Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59138/tde-08062014-091303/
Resumo: Neste trabalho foram investigados sistemas modelos do citocromo P450 para o estudo do metabolismo da monensina A empregando três estratégias de abordagem: a) utilização de metaloporfirinas e complexos salen como catalisadores para a oxidação da monensina A por diferentes oxidantes e meios reacionais; b) utilização de fungos de diferentes cepas para estudos de biotransformação deste antibiótico e c) emprego de microssomas de fígado de ratos e humanos para o estudo do metabolismo in vitro da monensina A. Os produtos obtidos nestes três sistemas foram comparados com os metabólitos formados em estudos in vivo relatados na literatura. Os resultados obtidos com os sistemas envolvendo os catalisadores mostraram que a formação dos produtos é dependente da escolha do meio reacional e do oxidante empregado. Os estudos de biotransformação da monensina A empregando microssomas de fígado e os fungos Aspergillus awamori, Beauveria bassianna, Cunninghamella echinulata, Cunninghamella elegans, Fusarium oxysporum, M61, Mucor rouxii e Penicillium brevicompactum mostraram que estes sistemas são viáveis nos processos de biotransformação deste fármaco nas condições empregadas. Os produtos obtidos nas reações e/ou meios de cultura com os diferentes sistemas foram identificados por espectrometria de massas sequencial e também por comparação com padrões obtidos anteriormente. Foram obtidos três principais metabólitos: (i) 3-O-desmetil-monensina A, (ii) 12-hidroxi-monensina A e (iii) 12-hidroxi-3-O-desmetil-monensina A, os quais coincidem com os principais metabólitos obtidos em estudos in vivo. Assim, os resultados mostraram que os modelos estudados podem ser usados para predizer o metabolismo da monensina A. Os metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A puderam ser produzidos e isolados dos sistemas catalíticos envolvendo a metaloporfirina e o catalisador de Jacobsen. Os ensaios biológicos de atividade tóxica em mitocôndrias, bem como a atividade antimicrobiana da monensina A e de seus metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A mostraram que estes metabólitos possuem menor ou nenhuma atividade nos parâmetros biológicos testados quando comparados à monensina A. Assim, pode-se inferir que o metabolismo da monensina A corresponde a uma via de detoxicação clássica, através da qual as moléculas produzidas são mais polares, dificultando o transporte de complexos catiônicos através das membranas, diminuindo suas propriedades biológicas e facilitando a sua eliminação.
id USP_67d72c8f1767ce8e293d5e0b53c0edd9
oai_identifier_str oai:teses.usp.br:tde-08062014-091303
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina AEvaluation of microbiological and chemical models for the study of (bio)transformations of the antibiotic monensin ABiotransformaçãoBiotransformationCatalisador de JacobsenCitocromo P450.Cytochrome P450In vitro metabolismJacobsen CatalystMetabolismo in vitroMetalloporphyrinMetaloporfirinasMonensin AMonensina ANeste trabalho foram investigados sistemas modelos do citocromo P450 para o estudo do metabolismo da monensina A empregando três estratégias de abordagem: a) utilização de metaloporfirinas e complexos salen como catalisadores para a oxidação da monensina A por diferentes oxidantes e meios reacionais; b) utilização de fungos de diferentes cepas para estudos de biotransformação deste antibiótico e c) emprego de microssomas de fígado de ratos e humanos para o estudo do metabolismo in vitro da monensina A. Os produtos obtidos nestes três sistemas foram comparados com os metabólitos formados em estudos in vivo relatados na literatura. Os resultados obtidos com os sistemas envolvendo os catalisadores mostraram que a formação dos produtos é dependente da escolha do meio reacional e do oxidante empregado. Os estudos de biotransformação da monensina A empregando microssomas de fígado e os fungos Aspergillus awamori, Beauveria bassianna, Cunninghamella echinulata, Cunninghamella elegans, Fusarium oxysporum, M61, Mucor rouxii e Penicillium brevicompactum mostraram que estes sistemas são viáveis nos processos de biotransformação deste fármaco nas condições empregadas. Os produtos obtidos nas reações e/ou meios de cultura com os diferentes sistemas foram identificados por espectrometria de massas sequencial e também por comparação com padrões obtidos anteriormente. Foram obtidos três principais metabólitos: (i) 3-O-desmetil-monensina A, (ii) 12-hidroxi-monensina A e (iii) 12-hidroxi-3-O-desmetil-monensina A, os quais coincidem com os principais metabólitos obtidos em estudos in vivo. Assim, os resultados mostraram que os modelos estudados podem ser usados para predizer o metabolismo da monensina A. Os metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A puderam ser produzidos e isolados dos sistemas catalíticos envolvendo a metaloporfirina e o catalisador de Jacobsen. Os ensaios biológicos de atividade tóxica em mitocôndrias, bem como a atividade antimicrobiana da monensina A e de seus metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A mostraram que estes metabólitos possuem menor ou nenhuma atividade nos parâmetros biológicos testados quando comparados à monensina A. Assim, pode-se inferir que o metabolismo da monensina A corresponde a uma via de detoxicação clássica, através da qual as moléculas produzidas são mais polares, dificultando o transporte de complexos catiônicos através das membranas, diminuindo suas propriedades biológicas e facilitando a sua eliminação.This study used model systems to investigate monensin A metabolism. More specifically, this work employed three strategies: (i) use of biomimetic systems, involving metalloporphyrins and salen complexes, to catalyze monensin A oxidation by different oxidants in distinct reaction media; (ii) application of different fungal strains to conduct biotransformation studies of this antibiotic; and (iii) use of rat and human liver microsomes as a cytochrome P450 model to monitor the in vitro metabolism of monensin A and compare the products with the metabolites generated in in vivo studies reported in the literature. Studies involving chemical catalysts showed that product formation depended on the choice of reaction medium and oxidant. Monensin A biotransformation studies employing fungi revealed that Aspergillus awamori, Beauveria bassianna, Cunninghamella echinulata, Cunninghamella elegans, Fusarium oxysporum, Marine M61, Mucor rouxii, and Penicillium brevicompactum successfully biotransformed the drug under the employed conditions. Liver microsomes also effectively transformed the target compound. Spectrometric analysis of the evaluated models attested to the formation of three main metabolites: (i) 3-O-demethyl monensin A, (ii) 12-hydroxy monensin A, and (iii) 12-hydroxy-3-O-demethyl-monensin A as the main monensin A derivatives. The products were identified by tandem mass spectrometry as well as by comparison with standards obtained in other studies. Taken together, the results demonstrated that the models studied herein could help to predict monensin A metabolismthey produced the main metabolites obtained in in vivo studies. Toxicity tests performed on mitochondria and antimicrobial assays revealed that the metabolites 3-O-demethyl-monensin A and 12-hydroxy-monensin A isolated from the reactions that employed chemical catalysts were less active or inactive as compared with monensin A. Therefore, it was possible to infer that monensin A metabolism is a classical detoxification pathway that generates polar molecules. The transport of such cationic molecules through the membrane is more difficult, decreasing their biological properties and facilitating their elimination.Biblioteca Digitais de Teses e Dissertações da USPAssis, Marilda das Dores deOliveira, Anderson Rodrigo Moraes deRocha, Bruno Alves2014-05-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59138/tde-08062014-091303/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:54Zoai:teses.usp.br:tde-08062014-091303Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
Evaluation of microbiological and chemical models for the study of (bio)transformations of the antibiotic monensin A
title Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
spellingShingle Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
Rocha, Bruno Alves
Biotransformação
Biotransformation
Catalisador de Jacobsen
Citocromo P450.
Cytochrome P450
In vitro metabolism
Jacobsen Catalyst
Metabolismo in vitro
Metalloporphyrin
Metaloporfirinas
Monensin A
Monensina A
title_short Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
title_full Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
title_fullStr Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
title_full_unstemmed Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
title_sort Avaliação de modelos químicos e microbiológicos para o estudo de (bio)transformações do antibiótico monensina A
author Rocha, Bruno Alves
author_facet Rocha, Bruno Alves
author_role author
dc.contributor.none.fl_str_mv Assis, Marilda das Dores de
Oliveira, Anderson Rodrigo Moraes de
dc.contributor.author.fl_str_mv Rocha, Bruno Alves
dc.subject.por.fl_str_mv Biotransformação
Biotransformation
Catalisador de Jacobsen
Citocromo P450.
Cytochrome P450
In vitro metabolism
Jacobsen Catalyst
Metabolismo in vitro
Metalloporphyrin
Metaloporfirinas
Monensin A
Monensina A
topic Biotransformação
Biotransformation
Catalisador de Jacobsen
Citocromo P450.
Cytochrome P450
In vitro metabolism
Jacobsen Catalyst
Metabolismo in vitro
Metalloporphyrin
Metaloporfirinas
Monensin A
Monensina A
description Neste trabalho foram investigados sistemas modelos do citocromo P450 para o estudo do metabolismo da monensina A empregando três estratégias de abordagem: a) utilização de metaloporfirinas e complexos salen como catalisadores para a oxidação da monensina A por diferentes oxidantes e meios reacionais; b) utilização de fungos de diferentes cepas para estudos de biotransformação deste antibiótico e c) emprego de microssomas de fígado de ratos e humanos para o estudo do metabolismo in vitro da monensina A. Os produtos obtidos nestes três sistemas foram comparados com os metabólitos formados em estudos in vivo relatados na literatura. Os resultados obtidos com os sistemas envolvendo os catalisadores mostraram que a formação dos produtos é dependente da escolha do meio reacional e do oxidante empregado. Os estudos de biotransformação da monensina A empregando microssomas de fígado e os fungos Aspergillus awamori, Beauveria bassianna, Cunninghamella echinulata, Cunninghamella elegans, Fusarium oxysporum, M61, Mucor rouxii e Penicillium brevicompactum mostraram que estes sistemas são viáveis nos processos de biotransformação deste fármaco nas condições empregadas. Os produtos obtidos nas reações e/ou meios de cultura com os diferentes sistemas foram identificados por espectrometria de massas sequencial e também por comparação com padrões obtidos anteriormente. Foram obtidos três principais metabólitos: (i) 3-O-desmetil-monensina A, (ii) 12-hidroxi-monensina A e (iii) 12-hidroxi-3-O-desmetil-monensina A, os quais coincidem com os principais metabólitos obtidos em estudos in vivo. Assim, os resultados mostraram que os modelos estudados podem ser usados para predizer o metabolismo da monensina A. Os metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A puderam ser produzidos e isolados dos sistemas catalíticos envolvendo a metaloporfirina e o catalisador de Jacobsen. Os ensaios biológicos de atividade tóxica em mitocôndrias, bem como a atividade antimicrobiana da monensina A e de seus metabólitos 3-O-desmetil-monensina A e 12-hidroxi-monensina A mostraram que estes metabólitos possuem menor ou nenhuma atividade nos parâmetros biológicos testados quando comparados à monensina A. Assim, pode-se inferir que o metabolismo da monensina A corresponde a uma via de detoxicação clássica, através da qual as moléculas produzidas são mais polares, dificultando o transporte de complexos catiônicos através das membranas, diminuindo suas propriedades biológicas e facilitando a sua eliminação.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59138/tde-08062014-091303/
url http://www.teses.usp.br/teses/disponiveis/59/59138/tde-08062014-091303/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257976588468224