Detecção e análise de sinais EEG com aplicação em robótica educacional

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pinto, Adam Henrique Moreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18032020-095758/
Resumo: Com a tecnologia, existem muitas formas de se aprimorar o aprendizado, mesmo fora da sala de aula. Sistemas educacionais têm sido bastante empregados para essa finalidade, inclusive com o uso de robôs, mas ainda pecam em alguns aspectos de interação com os humanos. As interfaces cérebro-computador (BCI) são sistemas que permitem a comunicação entre usuário e computador a partir de informações do cérebro, podendo dar mais robustez aos sistemas robóticos educacionais. As dificuldades dos alunos são claras durantes provas e outras atividades de avaliação, o problema são os erros durante os estudos para essas provas. Para ajudar neste ponto do aprendizado, foi utilizado um sinal evocado no cérebro relacionado à percepção do erro por um usuário, chamado de Error Related Potential (ErrP), que pode ser medido no EEG, uma forma não-invasiva de BCI. Porém, esses sistemas ainda pecam na qualidade do sinal obtido e na acurácia em encontrar esses momentos de erro. Neste trabalho, foi proposto um sistema de detecção do ErrP, passando pela filtragem, extração de características e classificação do sinal. O pré-processamento do sinal passou por filtros FIR e ICA para limpeza de ruídos e artefatos, foram criados vetores de características com as transformadas de Fourier e as famílias Haar e Daucechies de transformadas wavelets. Para classificação, foram comparadas redes neurais (MLP) e de aprendizado profundo (CNN). Os resultados demonstraram uma acurácia de 96% quando o sinal foi aplicado na base criada, e de 77,23% quando aplicada a toda a rede, mostrando ser promissora para utilização em sistemas educacionais. Além disso, mostrou que a diferença entre as famílias wavelets apresentadas neste trabalho foram pequenas, e que sua escolha pode ser feita considerando o tempo para processamento do sinal. Este trabalho serve como um módulo para um sistema educacional maior, que visa preencher algumas lacunas encontradas nos trabalhos disponíveis.
id USP_691fdc9a562d5b0bd59d66c6457328b9
oai_identifier_str oai:teses.usp.br:tde-18032020-095758
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Detecção e análise de sinais EEG com aplicação em robótica educacionalEEG signal detection and analysis with application in educational roboticsBrain-computer interfaces (BCI)Human-robot interaction (HRI)Interação homem-máquinaInterfaces cérebro-computadorPedagogical roboticsRI)Robótica educacionalCom a tecnologia, existem muitas formas de se aprimorar o aprendizado, mesmo fora da sala de aula. Sistemas educacionais têm sido bastante empregados para essa finalidade, inclusive com o uso de robôs, mas ainda pecam em alguns aspectos de interação com os humanos. As interfaces cérebro-computador (BCI) são sistemas que permitem a comunicação entre usuário e computador a partir de informações do cérebro, podendo dar mais robustez aos sistemas robóticos educacionais. As dificuldades dos alunos são claras durantes provas e outras atividades de avaliação, o problema são os erros durante os estudos para essas provas. Para ajudar neste ponto do aprendizado, foi utilizado um sinal evocado no cérebro relacionado à percepção do erro por um usuário, chamado de Error Related Potential (ErrP), que pode ser medido no EEG, uma forma não-invasiva de BCI. Porém, esses sistemas ainda pecam na qualidade do sinal obtido e na acurácia em encontrar esses momentos de erro. Neste trabalho, foi proposto um sistema de detecção do ErrP, passando pela filtragem, extração de características e classificação do sinal. O pré-processamento do sinal passou por filtros FIR e ICA para limpeza de ruídos e artefatos, foram criados vetores de características com as transformadas de Fourier e as famílias Haar e Daucechies de transformadas wavelets. Para classificação, foram comparadas redes neurais (MLP) e de aprendizado profundo (CNN). Os resultados demonstraram uma acurácia de 96% quando o sinal foi aplicado na base criada, e de 77,23% quando aplicada a toda a rede, mostrando ser promissora para utilização em sistemas educacionais. Além disso, mostrou que a diferença entre as famílias wavelets apresentadas neste trabalho foram pequenas, e que sua escolha pode ser feita considerando o tempo para processamento do sinal. Este trabalho serve como um módulo para um sistema educacional maior, que visa preencher algumas lacunas encontradas nos trabalhos disponíveis.With technology, there are many ways to improve learning, even outside the classroom. Edu- cational systems have long been employed for this purpose, including the use of robots, but there are still a lack in some aspects of human interaction. Brain-computer interfaces (BCI) are systems that allow communication between user and computer from brain information, and can give more robustness to educational robotic systems. Students difficulties are clear during tests and other assessment activities, the problem is errors during the studies and preparation for these tests. To help with learning, a brain-evoked signal related to a users perception of error, called Error Related Potential (ErrP), was used, which can be measured in EEG, a noninvasive form of BCI. However, these systems still lack the quality of the signal obtained and the accuracy of finding these Errp signals. In this work, a ErrP detection system was proposed, including filtering, feature extraction and signal classification. The preprocessing of the signal went through FIR and ICA filters for noise and artifact cleaning, feature vectors were created with the Fourier transforms and the Haar and Daubechies families of wavelet transforms. For classification, neural networks (MLP) and deep learning networks (CNN) were compared. The results showed an accuracy of 96% when the signal was applied to the base created, and 77,23% when applied to the whole database, showing to be promising for use in educational systems. Moreover, it showed that the difference between the wavelet families presented in this work were small, and that their choice can be made considering the time for signal processing. This proposal works as a module for a larger education system, which aims to fill in some of the gaps found in the available work.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinPinto, Adam Henrique Moreira2019-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-18032020-095758/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-03-20T15:41:02Zoai:teses.usp.br:tde-18032020-095758Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-03-20T15:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção e análise de sinais EEG com aplicação em robótica educacional
EEG signal detection and analysis with application in educational robotics
title Detecção e análise de sinais EEG com aplicação em robótica educacional
spellingShingle Detecção e análise de sinais EEG com aplicação em robótica educacional
Pinto, Adam Henrique Moreira
Brain-computer interfaces (BCI)
Human-robot interaction (HRI)
Interação homem-máquina
Interfaces cérebro-computador
Pedagogical roboticsRI)
Robótica educacional
title_short Detecção e análise de sinais EEG com aplicação em robótica educacional
title_full Detecção e análise de sinais EEG com aplicação em robótica educacional
title_fullStr Detecção e análise de sinais EEG com aplicação em robótica educacional
title_full_unstemmed Detecção e análise de sinais EEG com aplicação em robótica educacional
title_sort Detecção e análise de sinais EEG com aplicação em robótica educacional
author Pinto, Adam Henrique Moreira
author_facet Pinto, Adam Henrique Moreira
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
dc.contributor.author.fl_str_mv Pinto, Adam Henrique Moreira
dc.subject.por.fl_str_mv Brain-computer interfaces (BCI)
Human-robot interaction (HRI)
Interação homem-máquina
Interfaces cérebro-computador
Pedagogical roboticsRI)
Robótica educacional
topic Brain-computer interfaces (BCI)
Human-robot interaction (HRI)
Interação homem-máquina
Interfaces cérebro-computador
Pedagogical roboticsRI)
Robótica educacional
description Com a tecnologia, existem muitas formas de se aprimorar o aprendizado, mesmo fora da sala de aula. Sistemas educacionais têm sido bastante empregados para essa finalidade, inclusive com o uso de robôs, mas ainda pecam em alguns aspectos de interação com os humanos. As interfaces cérebro-computador (BCI) são sistemas que permitem a comunicação entre usuário e computador a partir de informações do cérebro, podendo dar mais robustez aos sistemas robóticos educacionais. As dificuldades dos alunos são claras durantes provas e outras atividades de avaliação, o problema são os erros durante os estudos para essas provas. Para ajudar neste ponto do aprendizado, foi utilizado um sinal evocado no cérebro relacionado à percepção do erro por um usuário, chamado de Error Related Potential (ErrP), que pode ser medido no EEG, uma forma não-invasiva de BCI. Porém, esses sistemas ainda pecam na qualidade do sinal obtido e na acurácia em encontrar esses momentos de erro. Neste trabalho, foi proposto um sistema de detecção do ErrP, passando pela filtragem, extração de características e classificação do sinal. O pré-processamento do sinal passou por filtros FIR e ICA para limpeza de ruídos e artefatos, foram criados vetores de características com as transformadas de Fourier e as famílias Haar e Daucechies de transformadas wavelets. Para classificação, foram comparadas redes neurais (MLP) e de aprendizado profundo (CNN). Os resultados demonstraram uma acurácia de 96% quando o sinal foi aplicado na base criada, e de 77,23% quando aplicada a toda a rede, mostrando ser promissora para utilização em sistemas educacionais. Além disso, mostrou que a diferença entre as famílias wavelets apresentadas neste trabalho foram pequenas, e que sua escolha pode ser feita considerando o tempo para processamento do sinal. Este trabalho serve como um módulo para um sistema educacional maior, que visa preencher algumas lacunas encontradas nos trabalhos disponíveis.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18032020-095758/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18032020-095758/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258210330738688