Reliability of power transistors in radiation environments

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Alberton, Saulo Gabriel Pereira Nascimento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052025-195023/
Resumo: Electronic devices are vulnerable to failures and adverse effects when operating in radiation environments, such as outer space and even the Earth\'s atmosphere. In space, heavy ions are the primary cause of destructive radiation effects in electronic devices, whereas, on Earth, neutrons are the main cause of natural radiation effects at flight altitudes and ground level. Power transistors are essential components of modern electronics and are particularly prone to destructive radiation effects due to their intense internal electric fields. The modern UMOSFET (U-groove Metal-Oxide-Semiconductor Field-Effect Transistor) technology is currently one of the most widely used semiconductor power devices worldwide, gradually replacing the traditional DMOSFET (Double-diffused MOSFET) technology due to its superior electrical performance. However, ensuring the radiation hardness of UMOS technology is crucial before its incorporation in high-reliability applications, such as in space, avionics, or autonomous vehicles. This study presents a comparative experimental and computational analysis of ion- and neutron-induced radiation effects on Si-based UMOS and DMOS power transistors. For space applications, transistors with similar voltage ratings were irradiated with alpha particles and heavy ion beams. For high-reliability atmospheric applications, similarly rated transistors were exposed to monoenergetic and quasi-atmospheric neutron beams, i.e., which replicate the energy spectrum of atmospheric neutrons. The main charge collection mechanisms, responses to non-destructive radiation effects, and vulnerabilities to destructive radiation effects are directly compared. Unlike SiC-based transistors and contrary to prior computational studies, experimental results reveal that Si-based UMOSFETs exhibit premature avalanche multiplication compared to DMOSFETs, favoring the occurrence of destructive radiation effects. Based on experimentally validated computational results, strategies are proposed to enhance the reliability of next-generation UMOSFETs. Moreover, an existing model for predicting worst-case ion-induced destructive effects, commonly adopted as a qualification protocol for power devices tested with particle accelerators, is refined and extended into a universal mathematical formulation. The proposed model encompasses various semiconductor materials relevant for power electronics applications, including Si, SiC, GaAs, GaN, Ge, and diamond. The improved model is experimentally validated across different power transistor technologies, demonstrating superior accuracy than the previous model when compared to experimental data.
id USP_69882e13bf439009286b5d5ec785ea2b
oai_identifier_str oai:teses.usp.br:tde-20052025-195023
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Reliability of power transistors in radiation environmentsConfiabilidade de transistores de potência em ambientes de radiaçãodipositivos eletrônicosefeitos de radiaçãoelectronic devicesinteração da radiação com a matériaradiation effectsradiation interaction with mattersingle-event burnoutsingle-event burnoutsingle-event effectssingle-event effectsElectronic devices are vulnerable to failures and adverse effects when operating in radiation environments, such as outer space and even the Earth\'s atmosphere. In space, heavy ions are the primary cause of destructive radiation effects in electronic devices, whereas, on Earth, neutrons are the main cause of natural radiation effects at flight altitudes and ground level. Power transistors are essential components of modern electronics and are particularly prone to destructive radiation effects due to their intense internal electric fields. The modern UMOSFET (U-groove Metal-Oxide-Semiconductor Field-Effect Transistor) technology is currently one of the most widely used semiconductor power devices worldwide, gradually replacing the traditional DMOSFET (Double-diffused MOSFET) technology due to its superior electrical performance. However, ensuring the radiation hardness of UMOS technology is crucial before its incorporation in high-reliability applications, such as in space, avionics, or autonomous vehicles. This study presents a comparative experimental and computational analysis of ion- and neutron-induced radiation effects on Si-based UMOS and DMOS power transistors. For space applications, transistors with similar voltage ratings were irradiated with alpha particles and heavy ion beams. For high-reliability atmospheric applications, similarly rated transistors were exposed to monoenergetic and quasi-atmospheric neutron beams, i.e., which replicate the energy spectrum of atmospheric neutrons. The main charge collection mechanisms, responses to non-destructive radiation effects, and vulnerabilities to destructive radiation effects are directly compared. Unlike SiC-based transistors and contrary to prior computational studies, experimental results reveal that Si-based UMOSFETs exhibit premature avalanche multiplication compared to DMOSFETs, favoring the occurrence of destructive radiation effects. Based on experimentally validated computational results, strategies are proposed to enhance the reliability of next-generation UMOSFETs. Moreover, an existing model for predicting worst-case ion-induced destructive effects, commonly adopted as a qualification protocol for power devices tested with particle accelerators, is refined and extended into a universal mathematical formulation. The proposed model encompasses various semiconductor materials relevant for power electronics applications, including Si, SiC, GaAs, GaN, Ge, and diamond. The improved model is experimentally validated across different power transistor technologies, demonstrating superior accuracy than the previous model when compared to experimental data.Dispositivos eletrônicos estão sujeitos a falhas e efeitos indesejados ao operar em ambientes de radiação, como o espaço sideral e até mesmo na atmosfera terrestre. No espaço sideral, íons pesados são os principais causadores de efeitos destrutivos de radiação em dispositivos eletrônicos, enquanto, na atmosfera terrestre, nêutrons são os principais responsáveis por efeitos de radiação natural em altitudes de vôo e ao nível do solo. Transistores de potência são fundamentais na eletrônica moderna e estão particularmente suscetíveis a efeitos destrutivos de radiação devido aos seus intensos campos elétricos internos. A moderna tecnologia UMOSFET (U-groove Metal-Oxide-Semiconductor Field-Effect Transistor), amplamente adotada globalmente por seu desempenho elétrico superior, tem gradualmente substituído a tradicional tecnologia DMOSFET (Double-diffused MOSFET). Entretanto, é crucial assegurar a resistência à radiação da tecnologia UMOS antes de incorporá-la em aplicações de alta confiabilidade, como no espaço sideral, em aviônica, ou em veículos autônomos. Este estudo apresenta investigações experimentais e computacionais comparativas dos efeitos de radiação induzidos por íons e nêutrons em transistores de potência UMOS e DMOS baseados em Si. Para aplicações espaciais, transistores de classificações de tensão equivalentes foram irradiados com partículas alfa e feixes de íons pesados. Para aplicações atmosféricas de alta confiabilidade, transistores de classificações semelhantes foram irradiados com feixes de nêutrons monoenergéticos e quasi-atmosféricos, i.e., que simulam o espectro de energia de nêutrons atmosféricos. Os principais mecanismos de coleção de carga, as respostas a efeitos não-destrutivos de radiação, e a vulnerabilidade a efeitos destrutivos de radiação são diretamente comparados. Diferentemente de transistores baseados em SiC e contrariando estudos computacionais anteriores, experimentos demonstram que UMOSFETs de Si exibem multiplicação avalanche prematura em comparação a DMOSFETs, favorecendo a ocorrência de efeitos destrutivos de radiação. Baseando-se em resultados computacionais validados experimentalmente, estratégias são propostas visando melhorar a confiabilidade de UMOSFETs de gerações futuras. Além disso, um modelo existente sobre a predição de pior resposta a efeitos destrutivos induzidos por íons pesados, frequentemente adotado como protocolo de qualificação de dispositivos de potência utilizando aceleradores de partículas, é refinado e estendido para uma formulação matemática universal. O modelo proposto contempla diversos materiais semicondutores relevantes para aplicações em eletrônica de potência, incluindo Si, SiC, GaAs, GaN, Ge, e diamante. O modelo aprimorado é validado experimentalmente para diferentes tecnologias transistoras de potência, demonstrando acurácia superior ao modelo preexistente em comparação a dados experimentais.Biblioteca Digitais de Teses e Dissertações da USPMedina, Nilberto HederAlberton, Saulo Gabriel Pereira Nascimento2025-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052025-195023/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-27T09:02:02Zoai:teses.usp.br:tde-20052025-195023Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-27T09:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Reliability of power transistors in radiation environments
Confiabilidade de transistores de potência em ambientes de radiação
title Reliability of power transistors in radiation environments
spellingShingle Reliability of power transistors in radiation environments
Alberton, Saulo Gabriel Pereira Nascimento
dipositivos eletrônicos
efeitos de radiação
electronic devices
interação da radiação com a matéria
radiation effects
radiation interaction with matter
single-event burnout
single-event burnout
single-event effects
single-event effects
title_short Reliability of power transistors in radiation environments
title_full Reliability of power transistors in radiation environments
title_fullStr Reliability of power transistors in radiation environments
title_full_unstemmed Reliability of power transistors in radiation environments
title_sort Reliability of power transistors in radiation environments
author Alberton, Saulo Gabriel Pereira Nascimento
author_facet Alberton, Saulo Gabriel Pereira Nascimento
author_role author
dc.contributor.none.fl_str_mv Medina, Nilberto Heder
dc.contributor.author.fl_str_mv Alberton, Saulo Gabriel Pereira Nascimento
dc.subject.por.fl_str_mv dipositivos eletrônicos
efeitos de radiação
electronic devices
interação da radiação com a matéria
radiation effects
radiation interaction with matter
single-event burnout
single-event burnout
single-event effects
single-event effects
topic dipositivos eletrônicos
efeitos de radiação
electronic devices
interação da radiação com a matéria
radiation effects
radiation interaction with matter
single-event burnout
single-event burnout
single-event effects
single-event effects
description Electronic devices are vulnerable to failures and adverse effects when operating in radiation environments, such as outer space and even the Earth\'s atmosphere. In space, heavy ions are the primary cause of destructive radiation effects in electronic devices, whereas, on Earth, neutrons are the main cause of natural radiation effects at flight altitudes and ground level. Power transistors are essential components of modern electronics and are particularly prone to destructive radiation effects due to their intense internal electric fields. The modern UMOSFET (U-groove Metal-Oxide-Semiconductor Field-Effect Transistor) technology is currently one of the most widely used semiconductor power devices worldwide, gradually replacing the traditional DMOSFET (Double-diffused MOSFET) technology due to its superior electrical performance. However, ensuring the radiation hardness of UMOS technology is crucial before its incorporation in high-reliability applications, such as in space, avionics, or autonomous vehicles. This study presents a comparative experimental and computational analysis of ion- and neutron-induced radiation effects on Si-based UMOS and DMOS power transistors. For space applications, transistors with similar voltage ratings were irradiated with alpha particles and heavy ion beams. For high-reliability atmospheric applications, similarly rated transistors were exposed to monoenergetic and quasi-atmospheric neutron beams, i.e., which replicate the energy spectrum of atmospheric neutrons. The main charge collection mechanisms, responses to non-destructive radiation effects, and vulnerabilities to destructive radiation effects are directly compared. Unlike SiC-based transistors and contrary to prior computational studies, experimental results reveal that Si-based UMOSFETs exhibit premature avalanche multiplication compared to DMOSFETs, favoring the occurrence of destructive radiation effects. Based on experimentally validated computational results, strategies are proposed to enhance the reliability of next-generation UMOSFETs. Moreover, an existing model for predicting worst-case ion-induced destructive effects, commonly adopted as a qualification protocol for power devices tested with particle accelerators, is refined and extended into a universal mathematical formulation. The proposed model encompasses various semiconductor materials relevant for power electronics applications, including Si, SiC, GaAs, GaN, Ge, and diamond. The improved model is experimentally validated across different power transistor technologies, demonstrating superior accuracy than the previous model when compared to experimental data.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052025-195023/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052025-195023/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786339587817472