Majorana bound states: from minimal Kitaev chains to long hybrid nanowires
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22042025-090816/ |
Resumo: | The experimental realization of non-Abelian excitations known as Majorana bound states (MBSs) in topological superconductors will represent a milestone toward decoherence-free quantum computation. So far, however, no conclusive observation of MBSs has been made. In this work, we address some of the main challenges in two of the platforms where MBSs are predicted to emerge: (i) long hybrid semiconducting-superconducting nanowires and (ii) arrays of quantum dots (QDs) coupled through superconductors. For setup (i), we propose a method of distinguishing between trivial and topological phases. We investigate the local conductance, obtained via the scattering matrix formalism in the Bogoliubov-de Gennes representation, for a nanowire whose couplings to left and right leads are asymmetric. The topological phase can be detected by verifying a correlated suppression of left and right local conductances upon disconnecting one of the leads. We provide simulations with realistic parameters, including the nanowire length, disorder, and electron temperature, and show that the predicted conductance suppression can be observed in current experiments. In setup (ii), arrays of QDs emulate the Kitaev model. In its minimal form, a 2-site Kitaev chain can host zero-energy excitations that share most of MBSs features at discrete points (sweet spots) in parameter space. Due to the lack of protection, these excitations are commonly known as Poor mans Majorana bound states (PMMs). We investigate a crossover between PMMs and MBSs as we gradually add sites to the Kitaev chain. We show that the convergence of zero-energy solutions at a 2-site sweet spot gives rise to a topological island, within which excitations have strictly zero energy and are robust against disorder. We propose to probe the zero-energy solutions by side-coupling a QD to the Kitaev chain and measuring the zero-bias conductance through the QD. This work represents a significant step forward to a conclusive observation of MBSs as it addresses key challenges in the two lead proposals under investigation in current experiments. |
| id |
USP_6afa8a2d7c2f49bcab9faf310f3edafc |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22042025-090816 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowiresEstados ligados de Majorana: de cadeias de Kitaev mínimas à longos fios quânticos híbridosConductanceCondutânciaDisorderEstados ligados de MajoranaEstatística não-AbelianaFunções de GreenMajorana bound statesMatriz SNon-Abelian anyonsScattering matrixThe experimental realization of non-Abelian excitations known as Majorana bound states (MBSs) in topological superconductors will represent a milestone toward decoherence-free quantum computation. So far, however, no conclusive observation of MBSs has been made. In this work, we address some of the main challenges in two of the platforms where MBSs are predicted to emerge: (i) long hybrid semiconducting-superconducting nanowires and (ii) arrays of quantum dots (QDs) coupled through superconductors. For setup (i), we propose a method of distinguishing between trivial and topological phases. We investigate the local conductance, obtained via the scattering matrix formalism in the Bogoliubov-de Gennes representation, for a nanowire whose couplings to left and right leads are asymmetric. The topological phase can be detected by verifying a correlated suppression of left and right local conductances upon disconnecting one of the leads. We provide simulations with realistic parameters, including the nanowire length, disorder, and electron temperature, and show that the predicted conductance suppression can be observed in current experiments. In setup (ii), arrays of QDs emulate the Kitaev model. In its minimal form, a 2-site Kitaev chain can host zero-energy excitations that share most of MBSs features at discrete points (sweet spots) in parameter space. Due to the lack of protection, these excitations are commonly known as Poor mans Majorana bound states (PMMs). We investigate a crossover between PMMs and MBSs as we gradually add sites to the Kitaev chain. We show that the convergence of zero-energy solutions at a 2-site sweet spot gives rise to a topological island, within which excitations have strictly zero energy and are robust against disorder. We propose to probe the zero-energy solutions by side-coupling a QD to the Kitaev chain and measuring the zero-bias conductance through the QD. This work represents a significant step forward to a conclusive observation of MBSs as it addresses key challenges in the two lead proposals under investigation in current experiments.A realização experimental de excitações não-abelianas conhecidas como estados ligados de Majorana (MBSs) em supercondutores topológicos representará um marco no caminho para a computação quântica livre de decoerência. Até o momento, no entanto, nenhuma observação conclusiva de MBSs foi feita. Neste trabalho, abordamos alguns dos principais desafios em duas das plataformas onde se prevê o surgimento de MBSs: (i) nanofios híbridos semicondutor-supercondutor longos e (ii) arranjos de pontos quânticos (QDs) acoplados via supercondutores. Para a configuração (i), propomos um método para distinguir entre fases triviais e topológicas. Investigamos a condutância local, obtida via o formalismo da matriz de espalhamento na representação de Bogoliubov-de Gennes, para um nanofio cujos acoplamentos com os contatos esquerdo e direito são assimétricos. A fase topológica pode ser detectada verificando uma supressão correlacionada das condutâncias locais esquerda e direita ao desconectar um dos contatos. Fornecemos simulações com parâmetros realistas, incluindo o comprimento do nanofio, desordem e temperatura eletrônica, e mostramos que a supressão prevista da condutância pode ser observada em experimentos atuais. Na configuração (ii), arranjos de QDs emulam o modelo de Kitaev. Em sua forma mínima, uma cadeia de Kitaev de 2 sítios pode hospedar excitações de energia zero que compartilham a maioria das características dos MBSs em pontos discretos (sweet spots) no espaço de parâmetros. Devido à falta de proteção, essas excitações são comumente conhecidas como estados Poor mans Majorana bound states (PMMs). Investigamos uma transição entre PMMs e MBSs à medida que adicionamos gradualmente sítios à cadeia de Kitaev. Mostramos que a convergência de soluções de energia zero em um sweet spot de 2 sítios dá origem a uma ilha topológica, dentro da qual as excitações possuem energia estritamente zero e são robustas contra desordem. Propomos sondar as soluções de energia zero acoplando lateralmente um QD à cadeia de Kitaev e medindo a condutância em zero-bias através do QD. Este trabalho representa um avanço significativo em direção à observação conclusiva de MBSs, ao abordar desafios cruciais nas duas principais propostas em investigação nos experimentos atuais.Biblioteca Digitais de Teses e Dissertações da USPMenezes, José Carlos Egues deDourado, Rodrigo de Abreu2025-02-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-22042025-090816/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-22T18:02:02Zoai:teses.usp.br:tde-22042025-090816Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-22T18:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires Estados ligados de Majorana: de cadeias de Kitaev mínimas à longos fios quânticos híbridos |
| title |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| spellingShingle |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires Dourado, Rodrigo de Abreu Conductance Condutância Disorder Estados ligados de Majorana Estatística não-Abeliana Funções de Green Majorana bound states Matriz S Non-Abelian anyons Scattering matrix |
| title_short |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| title_full |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| title_fullStr |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| title_full_unstemmed |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| title_sort |
Majorana bound states: from minimal Kitaev chains to long hybrid nanowires |
| author |
Dourado, Rodrigo de Abreu |
| author_facet |
Dourado, Rodrigo de Abreu |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Menezes, José Carlos Egues de |
| dc.contributor.author.fl_str_mv |
Dourado, Rodrigo de Abreu |
| dc.subject.por.fl_str_mv |
Conductance Condutância Disorder Estados ligados de Majorana Estatística não-Abeliana Funções de Green Majorana bound states Matriz S Non-Abelian anyons Scattering matrix |
| topic |
Conductance Condutância Disorder Estados ligados de Majorana Estatística não-Abeliana Funções de Green Majorana bound states Matriz S Non-Abelian anyons Scattering matrix |
| description |
The experimental realization of non-Abelian excitations known as Majorana bound states (MBSs) in topological superconductors will represent a milestone toward decoherence-free quantum computation. So far, however, no conclusive observation of MBSs has been made. In this work, we address some of the main challenges in two of the platforms where MBSs are predicted to emerge: (i) long hybrid semiconducting-superconducting nanowires and (ii) arrays of quantum dots (QDs) coupled through superconductors. For setup (i), we propose a method of distinguishing between trivial and topological phases. We investigate the local conductance, obtained via the scattering matrix formalism in the Bogoliubov-de Gennes representation, for a nanowire whose couplings to left and right leads are asymmetric. The topological phase can be detected by verifying a correlated suppression of left and right local conductances upon disconnecting one of the leads. We provide simulations with realistic parameters, including the nanowire length, disorder, and electron temperature, and show that the predicted conductance suppression can be observed in current experiments. In setup (ii), arrays of QDs emulate the Kitaev model. In its minimal form, a 2-site Kitaev chain can host zero-energy excitations that share most of MBSs features at discrete points (sweet spots) in parameter space. Due to the lack of protection, these excitations are commonly known as Poor mans Majorana bound states (PMMs). We investigate a crossover between PMMs and MBSs as we gradually add sites to the Kitaev chain. We show that the convergence of zero-energy solutions at a 2-site sweet spot gives rise to a topological island, within which excitations have strictly zero energy and are robust against disorder. We propose to probe the zero-energy solutions by side-coupling a QD to the Kitaev chain and measuring the zero-bias conductance through the QD. This work represents a significant step forward to a conclusive observation of MBSs as it addresses key challenges in the two lead proposals under investigation in current experiments. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22042025-090816/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-22042025-090816/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839154692685824 |