Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23072018-095234/ |
Resumo: | Nesta tese abordamos o problema de empacotamento em faixas bidimensional em níveis - 2LSP. O 2LSP é um problema de otimização combinatória que, no que diz respeito a modelagem, tem recebido pouca atenção por parte da comunidade científica. Atualmente, o modelo mais competitivo para este problema, até onde sabemos, é o proposto por Lodi et al. em 2004, onde é acrescentado ao problema a restrição de que os itens devem ser alocados formando níveis. Em 2015, um modelo de fluxo para tratar o problema foi apresentado por Mehdi Mrad. A literatura apresenta alguns modelos matemáticos que, embora não seja especificamente para este problema, são modelos eficientes e podem ser adaptados para o 2LSP. Neste trabalho, desenvolvemos novos modelos para o problema, adaptando três modelos de programação linear inteira mista da literatura. Mais ainda, comparamos o desempenho computacional destes novos modelos com os modelos de Lodi et al. e de Mehdi Mrad, usando instâncias clássicas da literatura. Os resultados computacionais mostram que uma das novas formulações matemáticas supera os demais modelos em relação ao número de soluções ótimas. Para finalizar, apresentamos uma aplicação prática com a finalidade de desenvolver uma ferramenta para a geração automática dos planogramas utilizados para a montagem de gôndulas de supermercados. Para a aplicação, apresentamos um modelo de programação inteira mista preliminar que pode ser aplicado para tratar aplicações reais. |
| id |
USP_6b2c3e9e09e81a3fc0d7b460c758522b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23072018-095234 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemáticaTwo-dimensional level packing problems: strategies based on mathematical modelingCorte guilhotinadoCutting and packing problemsEmpacotamento em níveisGuillotine cuttingInteger programmingLevel packingPlanogramasPlanogramsProblema de corte e empacotamentoProgramação inteiraNesta tese abordamos o problema de empacotamento em faixas bidimensional em níveis - 2LSP. O 2LSP é um problema de otimização combinatória que, no que diz respeito a modelagem, tem recebido pouca atenção por parte da comunidade científica. Atualmente, o modelo mais competitivo para este problema, até onde sabemos, é o proposto por Lodi et al. em 2004, onde é acrescentado ao problema a restrição de que os itens devem ser alocados formando níveis. Em 2015, um modelo de fluxo para tratar o problema foi apresentado por Mehdi Mrad. A literatura apresenta alguns modelos matemáticos que, embora não seja especificamente para este problema, são modelos eficientes e podem ser adaptados para o 2LSP. Neste trabalho, desenvolvemos novos modelos para o problema, adaptando três modelos de programação linear inteira mista da literatura. Mais ainda, comparamos o desempenho computacional destes novos modelos com os modelos de Lodi et al. e de Mehdi Mrad, usando instâncias clássicas da literatura. Os resultados computacionais mostram que uma das novas formulações matemáticas supera os demais modelos em relação ao número de soluções ótimas. Para finalizar, apresentamos uma aplicação prática com a finalidade de desenvolver uma ferramenta para a geração automática dos planogramas utilizados para a montagem de gôndulas de supermercados. Para a aplicação, apresentamos um modelo de programação inteira mista preliminar que pode ser aplicado para tratar aplicações reais.In this thesis we approached the two-dimensional level strip packing problem - 2LSP. 2LSP is a combinatorial optimization problem that, with respect to modeling, has received little attention from the scientific community. To the best of our knowledge, the most competitive model is the one proposed by Lodi et al. in 2004, where the items are packed by levels. In 2015, an arc flow model addressing the problem was proposed by Mehdi Mrad. The literature presents some mathematical models, despite not addressing specifically this problem, they are efficient and can be adapted for the two-dimensional level strip packing problem. In this thesis, we develop new models for the problem by adapting three mixed integer linear programming models from the literature. We also compare the computational performance of these new models with the models of Lodi et al. and Mehdi Mrad, by solving classical instances from the literature. The computational results show that one of the new mathematical formulations outperforms the remaining models with respect to the number of optimal solutions. To conclude, we present a practical application with the purpose of developing a tool for the automatic generation of the planograms used for the assembly of supermarket gondolas. For the application, we present a preliminary mixed integer programming model that can be applied to solve real applications.Biblioteca Digitais de Teses e Dissertações da USPOliveira, José Fernando da CostaSantos, Maristela Oliveira dosBezerra, Vanessa Munhoz Reina2018-01-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-23072018-095234/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-10-03T01:45:28Zoai:teses.usp.br:tde-23072018-095234Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática Two-dimensional level packing problems: strategies based on mathematical modeling |
| title |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| spellingShingle |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática Bezerra, Vanessa Munhoz Reina Corte guilhotinado Cutting and packing problems Empacotamento em níveis Guillotine cutting Integer programming Level packing Planogramas Planograms Problema de corte e empacotamento Programação inteira |
| title_short |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| title_full |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| title_fullStr |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| title_full_unstemmed |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| title_sort |
Problemas de empacotamento bidimensional em níveis: estratégias baseadas em modelagem matemática |
| author |
Bezerra, Vanessa Munhoz Reina |
| author_facet |
Bezerra, Vanessa Munhoz Reina |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oliveira, José Fernando da Costa Santos, Maristela Oliveira dos |
| dc.contributor.author.fl_str_mv |
Bezerra, Vanessa Munhoz Reina |
| dc.subject.por.fl_str_mv |
Corte guilhotinado Cutting and packing problems Empacotamento em níveis Guillotine cutting Integer programming Level packing Planogramas Planograms Problema de corte e empacotamento Programação inteira |
| topic |
Corte guilhotinado Cutting and packing problems Empacotamento em níveis Guillotine cutting Integer programming Level packing Planogramas Planograms Problema de corte e empacotamento Programação inteira |
| description |
Nesta tese abordamos o problema de empacotamento em faixas bidimensional em níveis - 2LSP. O 2LSP é um problema de otimização combinatória que, no que diz respeito a modelagem, tem recebido pouca atenção por parte da comunidade científica. Atualmente, o modelo mais competitivo para este problema, até onde sabemos, é o proposto por Lodi et al. em 2004, onde é acrescentado ao problema a restrição de que os itens devem ser alocados formando níveis. Em 2015, um modelo de fluxo para tratar o problema foi apresentado por Mehdi Mrad. A literatura apresenta alguns modelos matemáticos que, embora não seja especificamente para este problema, são modelos eficientes e podem ser adaptados para o 2LSP. Neste trabalho, desenvolvemos novos modelos para o problema, adaptando três modelos de programação linear inteira mista da literatura. Mais ainda, comparamos o desempenho computacional destes novos modelos com os modelos de Lodi et al. e de Mehdi Mrad, usando instâncias clássicas da literatura. Os resultados computacionais mostram que uma das novas formulações matemáticas supera os demais modelos em relação ao número de soluções ótimas. Para finalizar, apresentamos uma aplicação prática com a finalidade de desenvolver uma ferramenta para a geração automática dos planogramas utilizados para a montagem de gôndulas de supermercados. Para a aplicação, apresentamos um modelo de programação inteira mista preliminar que pode ser aplicado para tratar aplicações reais. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01-23 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23072018-095234/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23072018-095234/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258471603372032 |