Neural networks for out-of-distribution time series detection in one-class learning
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/ |
Resumo: | Time series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series. |
| id |
USP_6d5ad5fdff28ac4d6b7a0a1ae9befd86 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-29072025-141957 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Neural networks for out-of-distribution time series detection in one-class learningRedes neurais para detecção de séries temporais fora da distribuição em aprendizado de única classeAprendizado de única classeAprendizado profundoDeep learningNeural networksOne-class learningRedes neuraisSéries temporaisTime seriesTime series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series.A classicação de séries temporais apresenta desaos únicos, especialmente em domínios onde rotular dados apresenta um alto custo ou onde ocorre um grande desbalanceamento dos rótulos. A partir destes problemas, a tarefa de one-class learning (OCL), surge como uma alternativa, focando apenas no aprendizado de séries temporais pertencentes a uma única classe, também chamada de classe de interesse. Os métodos existentes de OCL frequentemente sofrem com instabilidades durante seu treinamento, dependncia de contraexemplos e adaptações inadequadas para capturar dependncias temporais. Esta dissertação propõe um novo framework de OCL para séries temporais, integrando mecanismos de redes neurais e técnicas de detecção de dados fora da distribuição (OOD). Para aprimorar a extração das características temporais, dois novos componentes nas redes neurais são apresentados: (i) LeakySineLU, uma nova função de ativação projetada para tarefas com séries temporais, e (ii) Convoluções Deformáveis, convoluções que capturam dependncias não contínuas e de longo alcance entre as observações de uma série. Esses mecanismos são incorporados a TGNet, um método de OCL proposto que utiliza GMMs para modelar a distribuição da classe de interesse e identicar instâncias fora desta distribuição. Foram conduzidos experimentos em 112 conjuntos de dados, demonstrando que a TGNet supera abordagens tradicionais de OCL para tarefas com séries temporais, alcançando a maior F1 média na classicação e o maior ranque médio.Biblioteca Digitais de Teses e Dissertações da USPSilva, Diego FurtadoJúnior, José Gilberto Barbosa de Medeiros2025-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-07-29T17:28:02Zoai:teses.usp.br:tde-29072025-141957Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-07-29T17:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Neural networks for out-of-distribution time series detection in one-class learning Redes neurais para detecção de séries temporais fora da distribuição em aprendizado de única classe |
| title |
Neural networks for out-of-distribution time series detection in one-class learning |
| spellingShingle |
Neural networks for out-of-distribution time series detection in one-class learning Júnior, José Gilberto Barbosa de Medeiros Aprendizado de única classe Aprendizado profundo Deep learning Neural networks One-class learning Redes neurais Séries temporais Time series |
| title_short |
Neural networks for out-of-distribution time series detection in one-class learning |
| title_full |
Neural networks for out-of-distribution time series detection in one-class learning |
| title_fullStr |
Neural networks for out-of-distribution time series detection in one-class learning |
| title_full_unstemmed |
Neural networks for out-of-distribution time series detection in one-class learning |
| title_sort |
Neural networks for out-of-distribution time series detection in one-class learning |
| author |
Júnior, José Gilberto Barbosa de Medeiros |
| author_facet |
Júnior, José Gilberto Barbosa de Medeiros |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Diego Furtado |
| dc.contributor.author.fl_str_mv |
Júnior, José Gilberto Barbosa de Medeiros |
| dc.subject.por.fl_str_mv |
Aprendizado de única classe Aprendizado profundo Deep learning Neural networks One-class learning Redes neurais Séries temporais Time series |
| topic |
Aprendizado de única classe Aprendizado profundo Deep learning Neural networks One-class learning Redes neurais Séries temporais Time series |
| description |
Time series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1844786351103279104 |