Neural networks for out-of-distribution time series detection in one-class learning

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Júnior, José Gilberto Barbosa de Medeiros
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/
Resumo: Time series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series.
id USP_6d5ad5fdff28ac4d6b7a0a1ae9befd86
oai_identifier_str oai:teses.usp.br:tde-29072025-141957
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Neural networks for out-of-distribution time series detection in one-class learningRedes neurais para detecção de séries temporais fora da distribuição em aprendizado de única classeAprendizado de única classeAprendizado profundoDeep learningNeural networksOne-class learningRedes neuraisSéries temporaisTime seriesTime series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series.A classicação de séries temporais apresenta desaos únicos, especialmente em domínios onde rotular dados apresenta um alto custo ou onde ocorre um grande desbalanceamento dos rótulos. A partir destes problemas, a tarefa de one-class learning (OCL), surge como uma alternativa, focando apenas no aprendizado de séries temporais pertencentes a uma única classe, também chamada de classe de interesse. Os métodos existentes de OCL frequentemente sofrem com instabilidades durante seu treinamento, dependncia de contraexemplos e adaptações inadequadas para capturar dependncias temporais. Esta dissertação propõe um novo framework de OCL para séries temporais, integrando mecanismos de redes neurais e técnicas de detecção de dados fora da distribuição (OOD). Para aprimorar a extração das características temporais, dois novos componentes nas redes neurais são apresentados: (i) LeakySineLU, uma nova função de ativação projetada para tarefas com séries temporais, e (ii) Convoluções Deformáveis, convoluções que capturam dependncias não contínuas e de longo alcance entre as observações de uma série. Esses mecanismos são incorporados a TGNet, um método de OCL proposto que utiliza GMMs para modelar a distribuição da classe de interesse e identicar instâncias fora desta distribuição. Foram conduzidos experimentos em 112 conjuntos de dados, demonstrando que a TGNet supera abordagens tradicionais de OCL para tarefas com séries temporais, alcançando a maior F1 média na classicação e o maior ranque médio.Biblioteca Digitais de Teses e Dissertações da USPSilva, Diego FurtadoJúnior, José Gilberto Barbosa de Medeiros2025-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-07-29T17:28:02Zoai:teses.usp.br:tde-29072025-141957Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-07-29T17:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Neural networks for out-of-distribution time series detection in one-class learning
Redes neurais para detecção de séries temporais fora da distribuição em aprendizado de única classe
title Neural networks for out-of-distribution time series detection in one-class learning
spellingShingle Neural networks for out-of-distribution time series detection in one-class learning
Júnior, José Gilberto Barbosa de Medeiros
Aprendizado de única classe
Aprendizado profundo
Deep learning
Neural networks
One-class learning
Redes neurais
Séries temporais
Time series
title_short Neural networks for out-of-distribution time series detection in one-class learning
title_full Neural networks for out-of-distribution time series detection in one-class learning
title_fullStr Neural networks for out-of-distribution time series detection in one-class learning
title_full_unstemmed Neural networks for out-of-distribution time series detection in one-class learning
title_sort Neural networks for out-of-distribution time series detection in one-class learning
author Júnior, José Gilberto Barbosa de Medeiros
author_facet Júnior, José Gilberto Barbosa de Medeiros
author_role author
dc.contributor.none.fl_str_mv Silva, Diego Furtado
dc.contributor.author.fl_str_mv Júnior, José Gilberto Barbosa de Medeiros
dc.subject.por.fl_str_mv Aprendizado de única classe
Aprendizado profundo
Deep learning
Neural networks
One-class learning
Redes neurais
Séries temporais
Time series
topic Aprendizado de única classe
Aprendizado profundo
Deep learning
Neural networks
One-class learning
Redes neurais
Séries temporais
Time series
description Time series classication presents unique challenges, particularly in domains where data labeling is expensive or where the class of interest is signicantly more prevalent than others. To address these challenges, one-class learning (OCL) emerges as an alternative, focusing exclusively on learning time series that belong to a single class, also referred to as the interest class. Existing OCL methods often suer from instability, reliance on counterexamples, and inadequate adaptations for capturing temporal dependencies. This dissertation proposes a novel OCL framework for time series, integrating neural network mechanisms and outof- distribution (OOD) detection techniques. To enhance temporal feature extraction, we introduce two new neural network components: (i) LeakySineLU, a novel activation function designed for time series tasks, and (ii) Deformable Convolutions for time series, which enable the capture of non-continuous and long-range dependencies between observations. These mechanisms are incorporated into TGNet, a proposed OCL method that utilizes Gaussian Mixture Models (GMMs) to model the distribution of the class of interest and identify out-of-distribution instances. Extensive experiments conducted on 112 datasets demonstrate that TGNet outperforms traditional OCL approaches, achieving a higher average F1-score in classication and, consequently, a higher mean ranking. Ablation studies conrm the individual contributions of the proposed mechanisms, reinforcing their role in advancing one-class learning for time series.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29072025-141957/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786351103279104