Data Augmentation methods in natural language processing.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Ferreira, Taynan Maier
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/
Resumo: Data Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures.
id USP_6e38ba7050072a84d53a10660452c9d4
oai_identifier_str oai:teses.usp.br:tde-04112021-162156
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Data Augmentation methods in natural language processing.Métodos de aumento de dados em processamento de linguagem natural.Aprendizado computacionalAumento de dadosBack-translationData AugmentationMachine learningNatural language processingProcessamento de linguagem naturalData Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures.Métodos de aumento de dados (AD) uma família de técnicas desenhada para a geração de dados de treino sintéticos têm demonstrado resultados notáveis em diversas tarefas de Aprendizado Profundo e Aprendizado de Máquina. Apesar de sua adoção ampla e bem-sucedida dentro da comunidade de visão computacional, técnicas de AD desenhados para tarefas de Processamento de Linguagem Natural (PLN) têm demonstrado avanço muito mais lento e limitado sucesso em ganho de desempenho. Como consequência, com a exceção da adoção de Back-Translation em tarefas de tradução, essas técnicas não tem sido exploradas tão profundamente e de forma ampla pela comunidade de PLN. Não há uma visão unificada ou análise comparativa entre os vários métodos de AD disponíveis. Além disso, ainda não se tem um entendimento prático adequado sobre o relacionamento entre AD e diversos outros aspectos importantes do desenho de um modelo, como dados de treino e parâmetros de regularização. Nesse trabalho, realizamos um profundo estudo de técnicas de AD em PLN, comparando seus desempenhos relativos sob diferentes cenários em tarefas de Análise de Sentimentos. Também propomos Deep Back-Translation, uma nova técnica de AD para PLN. N´os realizamos uma análise qualitativa e quantitativa do dado sintético, avaliamos seu ganho de desempenho e comparamos todos esses aspectos com procedimentos prévios de AD.Biblioteca Digitais de Teses e Dissertações da USPCosta, Anna Helena RealiFerreira, Taynan Maier2021-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:07Zoai:teses.usp.br:tde-04112021-162156Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Data Augmentation methods in natural language processing.
Métodos de aumento de dados em processamento de linguagem natural.
title Data Augmentation methods in natural language processing.
spellingShingle Data Augmentation methods in natural language processing.
Ferreira, Taynan Maier
Aprendizado computacional
Aumento de dados
Back-translation
Data Augmentation
Machine learning
Natural language processing
Processamento de linguagem natural
title_short Data Augmentation methods in natural language processing.
title_full Data Augmentation methods in natural language processing.
title_fullStr Data Augmentation methods in natural language processing.
title_full_unstemmed Data Augmentation methods in natural language processing.
title_sort Data Augmentation methods in natural language processing.
author Ferreira, Taynan Maier
author_facet Ferreira, Taynan Maier
author_role author
dc.contributor.none.fl_str_mv Costa, Anna Helena Reali
dc.contributor.author.fl_str_mv Ferreira, Taynan Maier
dc.subject.por.fl_str_mv Aprendizado computacional
Aumento de dados
Back-translation
Data Augmentation
Machine learning
Natural language processing
Processamento de linguagem natural
topic Aprendizado computacional
Aumento de dados
Back-translation
Data Augmentation
Machine learning
Natural language processing
Processamento de linguagem natural
description Data Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/
url https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279170609774592