Data Augmentation methods in natural language processing.
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/ |
Resumo: | Data Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures. |
| id |
USP_6e38ba7050072a84d53a10660452c9d4 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04112021-162156 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Data Augmentation methods in natural language processing.Métodos de aumento de dados em processamento de linguagem natural.Aprendizado computacionalAumento de dadosBack-translationData AugmentationMachine learningNatural language processingProcessamento de linguagem naturalData Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures.Métodos de aumento de dados (AD) uma família de técnicas desenhada para a geração de dados de treino sintéticos têm demonstrado resultados notáveis em diversas tarefas de Aprendizado Profundo e Aprendizado de Máquina. Apesar de sua adoção ampla e bem-sucedida dentro da comunidade de visão computacional, técnicas de AD desenhados para tarefas de Processamento de Linguagem Natural (PLN) têm demonstrado avanço muito mais lento e limitado sucesso em ganho de desempenho. Como consequência, com a exceção da adoção de Back-Translation em tarefas de tradução, essas técnicas não tem sido exploradas tão profundamente e de forma ampla pela comunidade de PLN. Não há uma visão unificada ou análise comparativa entre os vários métodos de AD disponíveis. Além disso, ainda não se tem um entendimento prático adequado sobre o relacionamento entre AD e diversos outros aspectos importantes do desenho de um modelo, como dados de treino e parâmetros de regularização. Nesse trabalho, realizamos um profundo estudo de técnicas de AD em PLN, comparando seus desempenhos relativos sob diferentes cenários em tarefas de Análise de Sentimentos. Também propomos Deep Back-Translation, uma nova técnica de AD para PLN. N´os realizamos uma análise qualitativa e quantitativa do dado sintético, avaliamos seu ganho de desempenho e comparamos todos esses aspectos com procedimentos prévios de AD.Biblioteca Digitais de Teses e Dissertações da USPCosta, Anna Helena RealiFerreira, Taynan Maier2021-07-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:07Zoai:teses.usp.br:tde-04112021-162156Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Data Augmentation methods in natural language processing. Métodos de aumento de dados em processamento de linguagem natural. |
| title |
Data Augmentation methods in natural language processing. |
| spellingShingle |
Data Augmentation methods in natural language processing. Ferreira, Taynan Maier Aprendizado computacional Aumento de dados Back-translation Data Augmentation Machine learning Natural language processing Processamento de linguagem natural |
| title_short |
Data Augmentation methods in natural language processing. |
| title_full |
Data Augmentation methods in natural language processing. |
| title_fullStr |
Data Augmentation methods in natural language processing. |
| title_full_unstemmed |
Data Augmentation methods in natural language processing. |
| title_sort |
Data Augmentation methods in natural language processing. |
| author |
Ferreira, Taynan Maier |
| author_facet |
Ferreira, Taynan Maier |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Costa, Anna Helena Reali |
| dc.contributor.author.fl_str_mv |
Ferreira, Taynan Maier |
| dc.subject.por.fl_str_mv |
Aprendizado computacional Aumento de dados Back-translation Data Augmentation Machine learning Natural language processing Processamento de linguagem natural |
| topic |
Aprendizado computacional Aumento de dados Back-translation Data Augmentation Machine learning Natural language processing Processamento de linguagem natural |
| description |
Data Augmentation (DA) methods a family of techniques designed for synthetic gen eration of training data have shown remarkable results in various Deep Learning and Machine Learning tasks. Despite its widespread and successful adoption within the com puter vision community, DA techniques designed for natural language processing (NLP) tasks have exhibited much slower advances and limited success in achieving performance gains. As a consequence, with the exception of applications of back-translation to machine translation tasks, these techniques have not been as thoroughly explored by the wider NLP community. There is no unified view or comparative analysis between the various DA methods available. Furthermore, there still lacks a proper practical understanding of the relationship between DA and several important aspects of model design, such as training data and regularization parameters. In this work, we perform a comprehensive study of NLP DA techniques, comparing their relative performance under different settings in Sentiment Analysis tasks. We also propose Deep Back-Translation, a novel NLP DA technique. We perform qualitative and quantitative analysis of generated synthetic data, evaluate its performance gains and compare all of these aspects to previous existing DA procedures. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/ |
| url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-04112021-162156/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279170609774592 |