Rede neural hierárquica para aprendizado de enxames de robôs em tempo real

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Batista, Murillo Rehder
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16072014-163543/
Resumo: Uma tendência crescente entre os pesquisadores da Robótica Móvel é a elaboração de sistemas robóticos descentralizados denominados enxames de robôs, nos quais a ação conjunta de cada agente leva à execução de tarefas de maneira mais robusta que quando realizada por um único robô. Um acréscimo adicional à robustez é conveniente em tais sistemas para que eles sejam de maior confiabilidade no mundo real. Neste trabalho, uma rede neural hierárquica desenvolvida para o aprendizado em tempo real inicialmente elaborada para o aprendizado de navegação de um único robô será estendida para controlar um enxame de robôs. O sistema realiza um balanceamento da influência de comportamentos implementados previamente em um robô de acordo com conhecimentos obtidos através da interação do mesmo com o ambiente. Cada robô possui sua própria rede neural, adquirindo seu conhecimento tanto independentemente quanto com o compartilhamento de informações com outros robôs. Espera-se que o uso de tal arquitetura permita uma adaptação mais rápida dos robôs ao ambiente, permitindo uma mudança em tempo real de seus parâmetros de acordo com as peculiaridades do ambiente no qual os robôs estão inseridos. A tarefa de escolta de um robô pelos demais é adotada para a avaliação de desempenho do modelo de rede neural proposto. Dois comportamentos são ponderados pela rede neural hierárquica: o de manutenção de uma distância preestabelecida a um agente e um outro de cobertura de área baseado em Diagramas Centroidais de Voronoi. Os testes foram feitos nos ambientes Player/Stage e indicam que a rede neural hierárquica torna os robôs capazes não apenas de aprender à medida que interagem com ambiente como de utilizar este conhecimento em tempo real para realizar a escolta de forma bem sucedida
id USP_6ebc9af5450fa3a1f5381d7dc4483258
oai_identifier_str oai:teses.usp.br:tde-16072014-163543
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Rede neural hierárquica para aprendizado de enxames de robôs em tempo realHierarchical neural network for online robot swarm learningCentroidal Voronoi tessellationsDiagramas Centroidais de VoronoiIntelligent systemsRobótica de enxameSistemas inteligentesSwarms roboticsUma tendência crescente entre os pesquisadores da Robótica Móvel é a elaboração de sistemas robóticos descentralizados denominados enxames de robôs, nos quais a ação conjunta de cada agente leva à execução de tarefas de maneira mais robusta que quando realizada por um único robô. Um acréscimo adicional à robustez é conveniente em tais sistemas para que eles sejam de maior confiabilidade no mundo real. Neste trabalho, uma rede neural hierárquica desenvolvida para o aprendizado em tempo real inicialmente elaborada para o aprendizado de navegação de um único robô será estendida para controlar um enxame de robôs. O sistema realiza um balanceamento da influência de comportamentos implementados previamente em um robô de acordo com conhecimentos obtidos através da interação do mesmo com o ambiente. Cada robô possui sua própria rede neural, adquirindo seu conhecimento tanto independentemente quanto com o compartilhamento de informações com outros robôs. Espera-se que o uso de tal arquitetura permita uma adaptação mais rápida dos robôs ao ambiente, permitindo uma mudança em tempo real de seus parâmetros de acordo com as peculiaridades do ambiente no qual os robôs estão inseridos. A tarefa de escolta de um robô pelos demais é adotada para a avaliação de desempenho do modelo de rede neural proposto. Dois comportamentos são ponderados pela rede neural hierárquica: o de manutenção de uma distância preestabelecida a um agente e um outro de cobertura de área baseado em Diagramas Centroidais de Voronoi. Os testes foram feitos nos ambientes Player/Stage e indicam que a rede neural hierárquica torna os robôs capazes não apenas de aprender à medida que interagem com ambiente como de utilizar este conhecimento em tempo real para realizar a escolta de forma bem sucedidaA growing trend among Mobile Robotics researchers is developing robot swarms, in which a decentralized robot team solves tasks by combining simple behaviors. It is convenient to have mechanisms to increase a robot systems robustness. In this work, a neural network inspired in behavioral analysis is used to make robots from a swarm to learn how to act propoerly. This network combines two innate behaviors and, according to its experience, learns with the robots mistakes how to make this combination. Each robot has access to its own independent neural network, and can share its knowledge with neighboring robots. It is expected that such architecture learns by itself when to stimulate or supress each behaviors influence as it interacts with the environment. The task chosen to evaluate the proposed system is the escorting of a mobile agent. Two behaviors are balanced to achieve an escorting behavior: maintenance of a minimum distance between a robot and the escort target and an area coverage method based on Centroidal Voronoi Tessellations. Tests were meade using the Player/Stage simulator, and they show that the robots not only are capable of adapting themselves but also are able to use the stored knowledge to improve their effectiveness in doing the desired taskBiblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinBatista, Murillo Rehder2014-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-16072014-163543/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-16072014-163543Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
Hierarchical neural network for online robot swarm learning
title Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
spellingShingle Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
Batista, Murillo Rehder
Centroidal Voronoi tessellations
Diagramas Centroidais de Voronoi
Intelligent systems
Robótica de enxame
Sistemas inteligentes
Swarms robotics
title_short Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
title_full Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
title_fullStr Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
title_full_unstemmed Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
title_sort Rede neural hierárquica para aprendizado de enxames de robôs em tempo real
author Batista, Murillo Rehder
author_facet Batista, Murillo Rehder
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
dc.contributor.author.fl_str_mv Batista, Murillo Rehder
dc.subject.por.fl_str_mv Centroidal Voronoi tessellations
Diagramas Centroidais de Voronoi
Intelligent systems
Robótica de enxame
Sistemas inteligentes
Swarms robotics
topic Centroidal Voronoi tessellations
Diagramas Centroidais de Voronoi
Intelligent systems
Robótica de enxame
Sistemas inteligentes
Swarms robotics
description Uma tendência crescente entre os pesquisadores da Robótica Móvel é a elaboração de sistemas robóticos descentralizados denominados enxames de robôs, nos quais a ação conjunta de cada agente leva à execução de tarefas de maneira mais robusta que quando realizada por um único robô. Um acréscimo adicional à robustez é conveniente em tais sistemas para que eles sejam de maior confiabilidade no mundo real. Neste trabalho, uma rede neural hierárquica desenvolvida para o aprendizado em tempo real inicialmente elaborada para o aprendizado de navegação de um único robô será estendida para controlar um enxame de robôs. O sistema realiza um balanceamento da influência de comportamentos implementados previamente em um robô de acordo com conhecimentos obtidos através da interação do mesmo com o ambiente. Cada robô possui sua própria rede neural, adquirindo seu conhecimento tanto independentemente quanto com o compartilhamento de informações com outros robôs. Espera-se que o uso de tal arquitetura permita uma adaptação mais rápida dos robôs ao ambiente, permitindo uma mudança em tempo real de seus parâmetros de acordo com as peculiaridades do ambiente no qual os robôs estão inseridos. A tarefa de escolta de um robô pelos demais é adotada para a avaliação de desempenho do modelo de rede neural proposto. Dois comportamentos são ponderados pela rede neural hierárquica: o de manutenção de uma distância preestabelecida a um agente e um outro de cobertura de área baseado em Diagramas Centroidais de Voronoi. Os testes foram feitos nos ambientes Player/Stage e indicam que a rede neural hierárquica torna os robôs capazes não apenas de aprender à medida que interagem com ambiente como de utilizar este conhecimento em tempo real para realizar a escolta de forma bem sucedida
publishDate 2014
dc.date.none.fl_str_mv 2014-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16072014-163543/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16072014-163543/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258219681939456