Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Maestre, Marina Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14102008-110231/
Resumo: Em um experimento, é comum ocorrerem fatores não controláveis, responsáveis pela heterogeneidade entre as parcelas. Mesmo executando os três princípios básicos da experimentação no planejamento (repetição, casualização e controle local), ainda assim, pode haver correlação nos erros e, portanto, dependência espacial na área estudada. Se for detectada essa estrutura de auto-correlação e se essa informação for utilizada na análise estatística, estimativas mais eficientes dos contrastes entre as médias dos tratamentos são garantidas, mas se tal estrutura for desconsiderada pode impedir que diferenças reais sejam detectadas. Neste trabalho, foram observadas as coordenadas dos centros das parcelas de um delineamento em blocos ao acaso. A variável resposta, deste experimento, é a concentração de carbono orgânico no solo, sendo as avaliações feitas no início do experimento, ou seja, antes da aplicaçao dos tratamentos, portanto, um ensaio em branco, um ano após a aplicação dos tratamentos e, novamente, depois de mais um ano. Para tanto, foram utilizadas as análises clássica e espacial na comparação dos métodos de estimação de contrastes de médias de tratamentos. O método estudado para a análise clássica, em que considera que os erros são não correlacionados, foi o dos mínimos quadrados ordinários. Já para a análise, levando em consideração a dependência espacial, foram utilizados o modelo geoestatístico, em que consiste na adição de um efeito aleatório com correlação, e o modelo de Papadakis, que consiste na adição de uma covariável construída a partir de observações em parcelas vizinhas. No modelo geoestatístico foi verificada a presença da dependência espacial através dos critérios de informação de Akaike e de informação Bayesiano ou de Schwarz e os métodos testados foram o do variograma seguido de mínimos quadrados generalizados e o da máxima verossimilhança. Para o modelo de Papadakis, foi testada a significância da covariável referente duas médias dos resíduos entre as parcelas vizinhas e a própria parcela tanto no modelo em blocos ao acaso quanto no modelo inteiramente casualizado, e o teste não foi significativo em nenhum dos dois casos. Mesmo assim, os cálculos foram realizados para esse método, mostrando que para esse conjunto de dados, este método não é indicado. Fazendo uso de algumas medidas de comparação desses métodos, para os dados em questão, o método de estimação dos contrastes de médias de tratamentos que apresentou as medidas de comparação mais dispersas foi o do modelo de Papadakis e o menos disperso foi o da máxima verossimilhança. Ainda, pelos intervalos de confiança, observou-se que na análise espacial, outros contrastes diferiram de zero significativamente, além daqueles que foram observados na análise clássica, o que se conclui que quando é levada em consideração a autocorrelação dos erros, os contrastes são estimados com maior eficiência
id USP_72c6f50753e60ab53d0bad28924ee3aa
oai_identifier_str oai:teses.usp.br:tde-14102008-110231
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacialEstimation of treatments means contrasts, in a random blocks model, using the classical and spatial analysisData ModellingEstatísticas espaciaisGeoestatísticaGeostatisticsLeast SquaresLikelihood.Mathematical ModelsMínimos quadradosModelagem de dadosModelos matemáticosSpatial StatisticsVerossimilhança.Em um experimento, é comum ocorrerem fatores não controláveis, responsáveis pela heterogeneidade entre as parcelas. Mesmo executando os três princípios básicos da experimentação no planejamento (repetição, casualização e controle local), ainda assim, pode haver correlação nos erros e, portanto, dependência espacial na área estudada. Se for detectada essa estrutura de auto-correlação e se essa informação for utilizada na análise estatística, estimativas mais eficientes dos contrastes entre as médias dos tratamentos são garantidas, mas se tal estrutura for desconsiderada pode impedir que diferenças reais sejam detectadas. Neste trabalho, foram observadas as coordenadas dos centros das parcelas de um delineamento em blocos ao acaso. A variável resposta, deste experimento, é a concentração de carbono orgânico no solo, sendo as avaliações feitas no início do experimento, ou seja, antes da aplicaçao dos tratamentos, portanto, um ensaio em branco, um ano após a aplicação dos tratamentos e, novamente, depois de mais um ano. Para tanto, foram utilizadas as análises clássica e espacial na comparação dos métodos de estimação de contrastes de médias de tratamentos. O método estudado para a análise clássica, em que considera que os erros são não correlacionados, foi o dos mínimos quadrados ordinários. Já para a análise, levando em consideração a dependência espacial, foram utilizados o modelo geoestatístico, em que consiste na adição de um efeito aleatório com correlação, e o modelo de Papadakis, que consiste na adição de uma covariável construída a partir de observações em parcelas vizinhas. No modelo geoestatístico foi verificada a presença da dependência espacial através dos critérios de informação de Akaike e de informação Bayesiano ou de Schwarz e os métodos testados foram o do variograma seguido de mínimos quadrados generalizados e o da máxima verossimilhança. Para o modelo de Papadakis, foi testada a significância da covariável referente duas médias dos resíduos entre as parcelas vizinhas e a própria parcela tanto no modelo em blocos ao acaso quanto no modelo inteiramente casualizado, e o teste não foi significativo em nenhum dos dois casos. Mesmo assim, os cálculos foram realizados para esse método, mostrando que para esse conjunto de dados, este método não é indicado. Fazendo uso de algumas medidas de comparação desses métodos, para os dados em questão, o método de estimação dos contrastes de médias de tratamentos que apresentou as medidas de comparação mais dispersas foi o do modelo de Papadakis e o menos disperso foi o da máxima verossimilhança. Ainda, pelos intervalos de confiança, observou-se que na análise espacial, outros contrastes diferiram de zero significativamente, além daqueles que foram observados na análise clássica, o que se conclui que quando é levada em consideração a autocorrelação dos erros, os contrastes são estimados com maior eficiênciaNot controllable factors is common occur in experiments, they are responsible for the heterogeneity among parcels. Even executing the three experimentation basic principles in the design (repetition, randomization and local control), even so, may have correlation in errors and, therefore, spatial dependence in the area of study. If that autocorrelation structure is detected and if this information is used in statistical analysis, estimates more efficient of contrasts among treatments means are guaranteed, but if this structure is disregarded can prevent that real diferences are detected. In this work, the coordinates of parcels centers in a design of random blocks were observed. The concentration of soil organic carbon is the response variable of this experiment, with the available made at the beginning of the experiment, ie, before the treatments application, therefore, a blank, a year after the treatments application and, again, after a year. Then, the classical and spatial analysis were used to compare the methods of estimation of treatments means contrasts. The method studied for the classical analysis, which considers that the errors are not correlated, was the ordinary least squares. For the analysis, considering the spatial dependence, were used the geostatistical model, where consists in the addition of a random effect with correlation, and the Papadakis model, which consists in the addition of a covariate built from observations in neighbouring. In geostatistical model was verified the spatial dependence through the Akaike and Bayesian or Schwarz criteria of information and the methods tested were the variogram followed by generalized least squares and the maximum likelihood. For the Papadakis model, was tested the significance of covariate referring to the average of residuals among neighbouring parcels and own parcel in the random blocks model and in the completely randomized model, and the test was not significant in any of both cases. Still, the calculus were made for this method, showing that for this data set, this method is not indicated. Using some measures to compare these methods, for these data, the method of estimation of treatments means contrasts which presented the measures of comparison more dispersed was the Papadakis model and the less dispersed was the maximum likelihood. Still, in the confidence intervals, it was observed that in spatial analysis other contrasts di®ered from zero significantly, besides of those which were observed in classical analysis, which concludes that when the autocorrelation of errors is considering, the contrasts are estimated with greater e±ciency.Biblioteca Digitais de Teses e Dissertações da USPBarbin, DecioMaestre, Marina Rodrigues2008-10-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-14102008-110231/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-14102008-110231Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
Estimation of treatments means contrasts, in a random blocks model, using the classical and spatial analysis
title Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
spellingShingle Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
Maestre, Marina Rodrigues
Data Modelling
Estatísticas espaciais
Geoestatística
Geostatistics
Least Squares
Likelihood.
Mathematical Models
Mínimos quadrados
Modelagem de dados
Modelos matemáticos
Spatial Statistics
Verossimilhança.
title_short Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
title_full Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
title_fullStr Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
title_full_unstemmed Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
title_sort Estimação de contrastes de médias de tratamentos, de um experimento em blocos ao acaso, utilizando as análises clássica e espacial
author Maestre, Marina Rodrigues
author_facet Maestre, Marina Rodrigues
author_role author
dc.contributor.none.fl_str_mv Barbin, Decio
dc.contributor.author.fl_str_mv Maestre, Marina Rodrigues
dc.subject.por.fl_str_mv Data Modelling
Estatísticas espaciais
Geoestatística
Geostatistics
Least Squares
Likelihood.
Mathematical Models
Mínimos quadrados
Modelagem de dados
Modelos matemáticos
Spatial Statistics
Verossimilhança.
topic Data Modelling
Estatísticas espaciais
Geoestatística
Geostatistics
Least Squares
Likelihood.
Mathematical Models
Mínimos quadrados
Modelagem de dados
Modelos matemáticos
Spatial Statistics
Verossimilhança.
description Em um experimento, é comum ocorrerem fatores não controláveis, responsáveis pela heterogeneidade entre as parcelas. Mesmo executando os três princípios básicos da experimentação no planejamento (repetição, casualização e controle local), ainda assim, pode haver correlação nos erros e, portanto, dependência espacial na área estudada. Se for detectada essa estrutura de auto-correlação e se essa informação for utilizada na análise estatística, estimativas mais eficientes dos contrastes entre as médias dos tratamentos são garantidas, mas se tal estrutura for desconsiderada pode impedir que diferenças reais sejam detectadas. Neste trabalho, foram observadas as coordenadas dos centros das parcelas de um delineamento em blocos ao acaso. A variável resposta, deste experimento, é a concentração de carbono orgânico no solo, sendo as avaliações feitas no início do experimento, ou seja, antes da aplicaçao dos tratamentos, portanto, um ensaio em branco, um ano após a aplicação dos tratamentos e, novamente, depois de mais um ano. Para tanto, foram utilizadas as análises clássica e espacial na comparação dos métodos de estimação de contrastes de médias de tratamentos. O método estudado para a análise clássica, em que considera que os erros são não correlacionados, foi o dos mínimos quadrados ordinários. Já para a análise, levando em consideração a dependência espacial, foram utilizados o modelo geoestatístico, em que consiste na adição de um efeito aleatório com correlação, e o modelo de Papadakis, que consiste na adição de uma covariável construída a partir de observações em parcelas vizinhas. No modelo geoestatístico foi verificada a presença da dependência espacial através dos critérios de informação de Akaike e de informação Bayesiano ou de Schwarz e os métodos testados foram o do variograma seguido de mínimos quadrados generalizados e o da máxima verossimilhança. Para o modelo de Papadakis, foi testada a significância da covariável referente duas médias dos resíduos entre as parcelas vizinhas e a própria parcela tanto no modelo em blocos ao acaso quanto no modelo inteiramente casualizado, e o teste não foi significativo em nenhum dos dois casos. Mesmo assim, os cálculos foram realizados para esse método, mostrando que para esse conjunto de dados, este método não é indicado. Fazendo uso de algumas medidas de comparação desses métodos, para os dados em questão, o método de estimação dos contrastes de médias de tratamentos que apresentou as medidas de comparação mais dispersas foi o do modelo de Papadakis e o menos disperso foi o da máxima verossimilhança. Ainda, pelos intervalos de confiança, observou-se que na análise espacial, outros contrastes diferiram de zero significativamente, além daqueles que foram observados na análise clássica, o que se conclui que quando é levada em consideração a autocorrelação dos erros, os contrastes são estimados com maior eficiência
publishDate 2008
dc.date.none.fl_str_mv 2008-10-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14102008-110231/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14102008-110231/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258129899716608