Dose savings in digital breast tomosynthesis through image processing
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02082017-164211/ |
Resumo: | In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. |
| id |
USP_72ce9f715ed8289df28ca72fdb834b1b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-02082017-164211 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Dose savings in digital breast tomosynthesis through image processingRedução da dose de radiação em tomossíntese mamária através de processamento de imagensBreast tomosynthesisDose reductionImage restorationInjeção de ruídoMammographyMamografia digitalMistura Poisson-GaussianaNoise injectionNoise suppressionPoisson noisePoisson-Gaussian mixtureRedução de dose de radiaçãoRedução de ruídoRestauração de imagemRuído PoissonTomossíntese digitalIn x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam.Em programas de rastreamento de câncer de mama, a dose de radiação deve ser mantida o mínimo necessário para se alcançar o diagnóstico, para garantir a segurança dos pacientes. Entretanto, imagens adquiridas com dose de radiação reduzida possuem qualidade inferior. Assim, existe um equilíbrio entre a dose de radiação e a qualidade da imagem. Este trabalho propõe um algoritmo de restauração de imagens capaz de recuperar a qualidade das imagens de tomossíntese digital mamária, adquiridas com doses reduzidas de radiação, para alcançar a qualidade de imagens adquiridas com a dose de referência. As contribuições do trabalho incluem a melhoria do modelo de ruído, e a inclusão das características do detector, como o ganho variável do ruído quântico. Para a validação a cadeia de processamento, um método de simulação de redução de dose de radiação foi proposto. Para investigar a possibilidade de redução de dose de radiação utilizada na tomossíntese, um estudo pré-clínico foi conduzido utilizando o método de simulação proposto e a cadeia de processamento. Imagens clínicas de tomossíntese mamária de 72 pacientes foram selecionadas e cinco observadores foram convidados para participar do estudo. Os resultados sugeriram que, após a utilização do processamento proposto, uma redução de 30% de dose de radiação pôde ser alcançada sem que os observadores percebessem diferença nos níveis de ruído e borramento. Assim, o algoritmo de processamento tem o potencial de reduzir os níveis de radiação na tomossíntese mamária, reduzindo também os riscos de indução do câncer de mama.Biblioteca Digitais de Teses e Dissertações da USPVieira, Marcelo Andrade da CostaBorges, Lucas Rodrigues2017-06-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-02082017-164211/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T13:16:04Zoai:teses.usp.br:tde-02082017-164211Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Dose savings in digital breast tomosynthesis through image processing Redução da dose de radiação em tomossíntese mamária através de processamento de imagens |
| title |
Dose savings in digital breast tomosynthesis through image processing |
| spellingShingle |
Dose savings in digital breast tomosynthesis through image processing Borges, Lucas Rodrigues Breast tomosynthesis Dose reduction Image restoration Injeção de ruído Mammography Mamografia digital Mistura Poisson-Gaussiana Noise injection Noise suppression Poisson noise Poisson-Gaussian mixture Redução de dose de radiação Redução de ruído Restauração de imagem Ruído Poisson Tomossíntese digital |
| title_short |
Dose savings in digital breast tomosynthesis through image processing |
| title_full |
Dose savings in digital breast tomosynthesis through image processing |
| title_fullStr |
Dose savings in digital breast tomosynthesis through image processing |
| title_full_unstemmed |
Dose savings in digital breast tomosynthesis through image processing |
| title_sort |
Dose savings in digital breast tomosynthesis through image processing |
| author |
Borges, Lucas Rodrigues |
| author_facet |
Borges, Lucas Rodrigues |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Vieira, Marcelo Andrade da Costa |
| dc.contributor.author.fl_str_mv |
Borges, Lucas Rodrigues |
| dc.subject.por.fl_str_mv |
Breast tomosynthesis Dose reduction Image restoration Injeção de ruído Mammography Mamografia digital Mistura Poisson-Gaussiana Noise injection Noise suppression Poisson noise Poisson-Gaussian mixture Redução de dose de radiação Redução de ruído Restauração de imagem Ruído Poisson Tomossíntese digital |
| topic |
Breast tomosynthesis Dose reduction Image restoration Injeção de ruído Mammography Mamografia digital Mistura Poisson-Gaussiana Noise injection Noise suppression Poisson noise Poisson-Gaussian mixture Redução de dose de radiação Redução de ruído Restauração de imagem Ruído Poisson Tomossíntese digital |
| description |
In x-ray imaging, the x-ray radiation must be the minimum necessary to achieve the required diagnostic objective, to ensure the patients safety. However, low-dose acquisitions yield images with low quality, which affect the radiologists image interpretation. Therefore, there is a compromise between image quality and radiation dose. This work proposes an image restoration framework capable of restoring low-dose acquisitions to achieve the quality of full-dose acquisitions. The contribution of the new method includes the capability of restoring images with quantum and electronic noise, pixel offset and variable detector gain. To validate the image processing chain, a simulation algorithm was proposed. The simulation generates low-dose DBT projections, starting from fulldose images. To investigate the feasibility of reducing the radiation dose in breast cancer screening programs, a simulated pre-clinical trial was conducted using the simulation and the image processing pipeline proposed in this work. Digital breast tomosynthesis (DBT) images from 72 patients were selected, and 5 human observers were invited for the experiment. The results suggested that a reduction of up to 30% in radiation dose could not be perceived by the human reader after the proposed image processing pipeline was applied. Thus, the image processing algorithm has the potential to decrease radiation levels in DBT, also decreasing the cancer induction risks associated with the exam. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-06-14 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02082017-164211/ |
| url |
http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02082017-164211/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279163136573440 |