Topologia computacional para análise de série temporal

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Miranda, Vanderlei Luiz Daneluz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-175021/
Resumo: Mudanças de padrão são variações nos dados da série temporal. Tais mudanças podem representar transições que ocorrem entre estados. A análise de dados topológicos (TDA) permite uma caracterização de dados de séries temporais obtidos a partir de sistemas dinâmicos complexos. Neste trabalho, apresentamos uma técnica de detecção de mudança de padrão baseada em TDA. Especificamente, a partir de uma determinada série temporal, dividimos o sinal em janelas deslizantes sem sobreposição e para cada janela calculamos a homologia persistente, ou seja, o barcode associado. A partir desse barcode, o intervalo médio e a entropia persistente são calculados e plotados em relação à duração do sinal. Resultados experimentais em conjuntos de dados reais e artificiais mostram bons resultados do método proposto: 1) Detecta mudança de padrões identificando a mudança no intervalo médio e calculando a entropia persistente para os barcodes gerados pelo conjunto de dados de entrada. 2) Mostra qualitativamente quão sensível é a escolha do método de filtragem para evidenciar características topológicas do espaço original sob exame. Isto é conseguido usando duas filtragens: uma filtragem métrica e uma do tipo lower-star. 3) Variando o tamanho da janela, o método pode caracterizar a presença de estruturas locais do conjunto de dados, como o período de convulsão nos sinais EEG. 4) O método proposto é capaz de caracterizar a complexidade pela medida de entropia persistente dos barcodes, uma medida de entropia baseada na definição de entropia de Shannon. Além disso, neste trabalho, mostramos a evidência de mudanças de complexidade associadas a um período de convulsão de um sinal de EEG
id USP_72d2d864e521e707f557e45c9da8a2d9
oai_identifier_str oai:teses.usp.br:tde-13052019-175021
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Topologia computacional para análise de série temporalComputational topology for time series analysisAnálise de série temporalAnálise topológica de dadosComplex networksComplexidadeComplexityEntropia persistenteHomologia persistenteMudança de padrãoPattern changing detectionPersistent entropyPersistent homologyRedes complexasTime series analysisTopological data analysisMudanças de padrão são variações nos dados da série temporal. Tais mudanças podem representar transições que ocorrem entre estados. A análise de dados topológicos (TDA) permite uma caracterização de dados de séries temporais obtidos a partir de sistemas dinâmicos complexos. Neste trabalho, apresentamos uma técnica de detecção de mudança de padrão baseada em TDA. Especificamente, a partir de uma determinada série temporal, dividimos o sinal em janelas deslizantes sem sobreposição e para cada janela calculamos a homologia persistente, ou seja, o barcode associado. A partir desse barcode, o intervalo médio e a entropia persistente são calculados e plotados em relação à duração do sinal. Resultados experimentais em conjuntos de dados reais e artificiais mostram bons resultados do método proposto: 1) Detecta mudança de padrões identificando a mudança no intervalo médio e calculando a entropia persistente para os barcodes gerados pelo conjunto de dados de entrada. 2) Mostra qualitativamente quão sensível é a escolha do método de filtragem para evidenciar características topológicas do espaço original sob exame. Isto é conseguido usando duas filtragens: uma filtragem métrica e uma do tipo lower-star. 3) Variando o tamanho da janela, o método pode caracterizar a presença de estruturas locais do conjunto de dados, como o período de convulsão nos sinais EEG. 4) O método proposto é capaz de caracterizar a complexidade pela medida de entropia persistente dos barcodes, uma medida de entropia baseada na definição de entropia de Shannon. Além disso, neste trabalho, mostramos a evidência de mudanças de complexidade associadas a um período de convulsão de um sinal de EEGPattern changings are variations in time series data. Such changes may represent transitions that occur between states. Topological data analysis (TDA) allows characterization of time-series data obtained from complex dynamical systems. In this work, we present a pattern changing detection technique based on TDA. Specifically, starting from a given time series, we divide the signal in slicing windows with no overlapping and for each window we calculate the persistent homology, i.e., the associated barcode. From the barcode the average interval size and persistent entropy are calculated and plotted against the signal duration. Experimental results on artificial and real data sets show good results of the proposed method: 1) It detects pattern changing by identifying the change in the average interval size and calculated persistent entropy for the barcodes generated by the input data set. 2) It shows qualitatively how sensible the choice of filtration method is to evidence topological features of the original space under examination. This is accomplished by using two filtrations: a metric and a lower-star filtration. 3) By varying the slice window size, the method can characterize the presence of local structures of the data set such as the seizure period in EEG signals. 4) The proposed method can characterize complexity by the measure persistent entropy for barcodes, an entropy measure based on Shannon´s entropy definition. Moreover, in this work, we show the evidence of complexity changes associated with a seizure period of an EEG signalBiblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoMiranda, Vanderlei Luiz Daneluz2019-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-175021/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:53:46Zoai:teses.usp.br:tde-13052019-175021Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:53:46Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Topologia computacional para análise de série temporal
Computational topology for time series analysis
title Topologia computacional para análise de série temporal
spellingShingle Topologia computacional para análise de série temporal
Miranda, Vanderlei Luiz Daneluz
Análise de série temporal
Análise topológica de dados
Complex networks
Complexidade
Complexity
Entropia persistente
Homologia persistente
Mudança de padrão
Pattern changing detection
Persistent entropy
Persistent homology
Redes complexas
Time series analysis
Topological data analysis
title_short Topologia computacional para análise de série temporal
title_full Topologia computacional para análise de série temporal
title_fullStr Topologia computacional para análise de série temporal
title_full_unstemmed Topologia computacional para análise de série temporal
title_sort Topologia computacional para análise de série temporal
author Miranda, Vanderlei Luiz Daneluz
author_facet Miranda, Vanderlei Luiz Daneluz
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
dc.contributor.author.fl_str_mv Miranda, Vanderlei Luiz Daneluz
dc.subject.por.fl_str_mv Análise de série temporal
Análise topológica de dados
Complex networks
Complexidade
Complexity
Entropia persistente
Homologia persistente
Mudança de padrão
Pattern changing detection
Persistent entropy
Persistent homology
Redes complexas
Time series analysis
Topological data analysis
topic Análise de série temporal
Análise topológica de dados
Complex networks
Complexidade
Complexity
Entropia persistente
Homologia persistente
Mudança de padrão
Pattern changing detection
Persistent entropy
Persistent homology
Redes complexas
Time series analysis
Topological data analysis
description Mudanças de padrão são variações nos dados da série temporal. Tais mudanças podem representar transições que ocorrem entre estados. A análise de dados topológicos (TDA) permite uma caracterização de dados de séries temporais obtidos a partir de sistemas dinâmicos complexos. Neste trabalho, apresentamos uma técnica de detecção de mudança de padrão baseada em TDA. Especificamente, a partir de uma determinada série temporal, dividimos o sinal em janelas deslizantes sem sobreposição e para cada janela calculamos a homologia persistente, ou seja, o barcode associado. A partir desse barcode, o intervalo médio e a entropia persistente são calculados e plotados em relação à duração do sinal. Resultados experimentais em conjuntos de dados reais e artificiais mostram bons resultados do método proposto: 1) Detecta mudança de padrões identificando a mudança no intervalo médio e calculando a entropia persistente para os barcodes gerados pelo conjunto de dados de entrada. 2) Mostra qualitativamente quão sensível é a escolha do método de filtragem para evidenciar características topológicas do espaço original sob exame. Isto é conseguido usando duas filtragens: uma filtragem métrica e uma do tipo lower-star. 3) Variando o tamanho da janela, o método pode caracterizar a presença de estruturas locais do conjunto de dados, como o período de convulsão nos sinais EEG. 4) O método proposto é capaz de caracterizar a complexidade pela medida de entropia persistente dos barcodes, uma medida de entropia baseada na definição de entropia de Shannon. Além disso, neste trabalho, mostramos a evidência de mudanças de complexidade associadas a um período de convulsão de um sinal de EEG
publishDate 2019
dc.date.none.fl_str_mv 2019-03-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-175021/
url http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-175021/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258094790246400