Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação
| Ano de defesa: | 2010 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17112010-110417/ |
Resumo: | Uma forma de extrair e organizar o conhecimento, que tem recebido muita atenção nos últimos anos, é por meio de uma representação estrutural dividida por tópicos hierarquicamente relacionados. Uma vez construída a estrutura hierárquica, é necessário encontrar descritores para cada um dos grupos obtidos pois a interpretação destes grupos é uma tarefa complexa para o usuário, já que normalmente os algoritmos não apresentam descrições conceituais simples. Os métodos encontrados na literatura consideram cada documento como uma bag-of-words e não exploram explicitamente o relacionamento existente entre os termos dos documento do grupo. No entanto, essas relações podem trazer informações importantes para a decisão dos termos que devem ser escolhidos como descritores dos nós, e poderiam ser representadas por regras de associação. Assim, o objetivo deste trabalho é avaliar a utilização de regras de associação para apoiar a identificação de descritores para agrupamentos hierárquicos. Para isto, foi proposto o método SeCLAR (Selecting Candidate Labels using Association Rules), que explora o uso de regras de associação para a seleção de descritores para agrupamentos hierárquicos de documentos. Este método gera regras de associação baseadas em transações construídas à partir de cada documento da coleção, e utiliza a informação de relacionamento existente entre os grupos do agrupamento hierárquico para selecionar candidatos a descritores. Os resultados da avaliação experimental indicam que é possível obter uma melhora significativa com relação a precisão e a cobertura dos métodos tradicionais |
| id |
USP_7310e2102d61252da71317ad4a7530c2 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-17112010-110417 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associaçãoSelecting candidate labels for hierarchical document clusters using association rulesAgrupamento hierárquico de documantosAssociation rulesDescritores para agrupamentos hierárquicosHierarchical document clusteringLabel hierarchical clusteringMineração de textoRegras de associaçãoText miningUma forma de extrair e organizar o conhecimento, que tem recebido muita atenção nos últimos anos, é por meio de uma representação estrutural dividida por tópicos hierarquicamente relacionados. Uma vez construída a estrutura hierárquica, é necessário encontrar descritores para cada um dos grupos obtidos pois a interpretação destes grupos é uma tarefa complexa para o usuário, já que normalmente os algoritmos não apresentam descrições conceituais simples. Os métodos encontrados na literatura consideram cada documento como uma bag-of-words e não exploram explicitamente o relacionamento existente entre os termos dos documento do grupo. No entanto, essas relações podem trazer informações importantes para a decisão dos termos que devem ser escolhidos como descritores dos nós, e poderiam ser representadas por regras de associação. Assim, o objetivo deste trabalho é avaliar a utilização de regras de associação para apoiar a identificação de descritores para agrupamentos hierárquicos. Para isto, foi proposto o método SeCLAR (Selecting Candidate Labels using Association Rules), que explora o uso de regras de associação para a seleção de descritores para agrupamentos hierárquicos de documentos. Este método gera regras de associação baseadas em transações construídas à partir de cada documento da coleção, e utiliza a informação de relacionamento existente entre os grupos do agrupamento hierárquico para selecionar candidatos a descritores. Os resultados da avaliação experimental indicam que é possível obter uma melhora significativa com relação a precisão e a cobertura dos métodos tradicionaisOne way to organize knowledge, that has received much attention in recent years, is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters, since most algorithms do not produce simple descriptions and the interpretation of these clusters is a difficult task for users. The related works consider each document as a bag-of-words and do not explore explicitly the relationship between the terms of the documents. However, these relationships can provide important information to the decision of the terms that must be chosen as descriptors of the nodes, and could be represented by rass. This works aims to evaluate the use of association rules to support the identification of labels for hierarchical document clusters. Thus, this paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical clusters of documents. This method generates association rules based on transactions built from each document in the collection, and uses the information relationship between the nodes of hierarchical clustering to select candidates for labels. The experimental results show that it is possible to obtain a significant improvement with respect to precision and recall of traditional methodsBiblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraSantos, Fabiano Fernandes dos2010-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-17112010-110417/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:12Zoai:teses.usp.br:tde-17112010-110417Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação Selecting candidate labels for hierarchical document clusters using association rules |
| title |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| spellingShingle |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação Santos, Fabiano Fernandes dos Agrupamento hierárquico de documantos Association rules Descritores para agrupamentos hierárquicos Hierarchical document clustering Label hierarchical clustering Mineração de texto Regras de associação Text mining |
| title_short |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| title_full |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| title_fullStr |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| title_full_unstemmed |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| title_sort |
Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação |
| author |
Santos, Fabiano Fernandes dos |
| author_facet |
Santos, Fabiano Fernandes dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rezende, Solange Oliveira |
| dc.contributor.author.fl_str_mv |
Santos, Fabiano Fernandes dos |
| dc.subject.por.fl_str_mv |
Agrupamento hierárquico de documantos Association rules Descritores para agrupamentos hierárquicos Hierarchical document clustering Label hierarchical clustering Mineração de texto Regras de associação Text mining |
| topic |
Agrupamento hierárquico de documantos Association rules Descritores para agrupamentos hierárquicos Hierarchical document clustering Label hierarchical clustering Mineração de texto Regras de associação Text mining |
| description |
Uma forma de extrair e organizar o conhecimento, que tem recebido muita atenção nos últimos anos, é por meio de uma representação estrutural dividida por tópicos hierarquicamente relacionados. Uma vez construída a estrutura hierárquica, é necessário encontrar descritores para cada um dos grupos obtidos pois a interpretação destes grupos é uma tarefa complexa para o usuário, já que normalmente os algoritmos não apresentam descrições conceituais simples. Os métodos encontrados na literatura consideram cada documento como uma bag-of-words e não exploram explicitamente o relacionamento existente entre os termos dos documento do grupo. No entanto, essas relações podem trazer informações importantes para a decisão dos termos que devem ser escolhidos como descritores dos nós, e poderiam ser representadas por regras de associação. Assim, o objetivo deste trabalho é avaliar a utilização de regras de associação para apoiar a identificação de descritores para agrupamentos hierárquicos. Para isto, foi proposto o método SeCLAR (Selecting Candidate Labels using Association Rules), que explora o uso de regras de associação para a seleção de descritores para agrupamentos hierárquicos de documentos. Este método gera regras de associação baseadas em transações construídas à partir de cada documento da coleção, e utiliza a informação de relacionamento existente entre os grupos do agrupamento hierárquico para selecionar candidatos a descritores. Os resultados da avaliação experimental indicam que é possível obter uma melhora significativa com relação a precisão e a cobertura dos métodos tradicionais |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-09-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17112010-110417/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17112010-110417/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258201062375424 |