Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Rodrigues, Vinicius de Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
Resumo: We provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov.
id USP_73940fe78a6932d8c43074ef39e006a3
oai_identifier_str oai:teses.usp.br:tde-14062022-164023
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groupsEnfraquecimentos de compacidade e normalidade em espaços de Isbell-Mrówka, hiperespaços de Vietoris e grupos AbelianosCombinatória infinitaCompacidade enumerávelCountably compactnessEspaços de Isbell-MrówkaGeneral topologyGrupos topológicosHiperespaços de VietorisHyperspaces of VietorisInfinitary combinatoricsIsbell-Mrówka spacesPseudocompacidadePseudocompacityTopologia geralTopological groupsWe provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov.Nós fornecemos um exemplo de espaço topológico Tychonoff, almost-normal não normal e exploramos almost-normalidade restrita aos espaços de Isbell-Mrówka. Seguindo essa linha de estudo, estudamos almost disjoint families fortemente aleph_0-separadas comparando elas ao que se sabe sobre almost disjoint families normais e pseudonormais. Definimos uma nova família de conjuntos especiais de números reais relacionadas a esses problemas que chamamos de weak lambda-sets. Esse estudo explora algumas questões de Paul Szeptycki e Sergio García-Balan. Nós exploramos as perguntas de John Ginsburg sobre pseudocompacidade e compacidade enumerável de hiperespaços de Vietoris. Em particular, obtivemos um exemplo de um subespaço de beta omega contendo omega cujas todas potências menores do que a característica cardinal h são enumeravelmente compactas, mas cujo hiperespaço de Vietoris não é pseudocompacto. Também exploramos essas perguntas restritas a espaços de Isbell-Mrówka, provando que a existência de uma MAD family cujo hiperespaço de Vietoris de seu espaço de Isbell-Mrówka não é pseudocompacto é equivalente ao número de Baire de omega* ser menor ou igual à c. Também obtivemos um exemplo consistente de um espaço de Isbell-Mrówka deste tipo de cardinalidade omega_2<c. Finalmente, utilizamos forcing para obter uma classificação para grupos Abelianos de não torção de cardinalidade <=2^c que admitem uma topologia enumeravelmente compacta Hausdorff contendo sequências convergentes, parcialmente respondendo uma questão de Dikranjan and Shakhmatov.Biblioteca Digitais de Teses e Dissertações da USPTomita, Artur HideyukiRodrigues, Vinicius de Oliveira2022-06-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-14T18:42:50Zoai:teses.usp.br:tde-14062022-164023Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-14T18:42:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
Enfraquecimentos de compacidade e normalidade em espaços de Isbell-Mrówka, hiperespaços de Vietoris e grupos Abelianos
title Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
spellingShingle Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
Rodrigues, Vinicius de Oliveira
Combinatória infinita
Compacidade enumerável
Countably compactness
Espaços de Isbell-Mrówka
General topology
Grupos topológicos
Hiperespaços de Vietoris
Hyperspaces of Vietoris
Infinitary combinatorics
Isbell-Mrówka spaces
Pseudocompacidade
Pseudocompacity
Topologia geral
Topological groups
title_short Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
title_full Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
title_fullStr Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
title_full_unstemmed Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
title_sort Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
author Rodrigues, Vinicius de Oliveira
author_facet Rodrigues, Vinicius de Oliveira
author_role author
dc.contributor.none.fl_str_mv Tomita, Artur Hideyuki
dc.contributor.author.fl_str_mv Rodrigues, Vinicius de Oliveira
dc.subject.por.fl_str_mv Combinatória infinita
Compacidade enumerável
Countably compactness
Espaços de Isbell-Mrówka
General topology
Grupos topológicos
Hiperespaços de Vietoris
Hyperspaces of Vietoris
Infinitary combinatorics
Isbell-Mrówka spaces
Pseudocompacidade
Pseudocompacity
Topologia geral
Topological groups
topic Combinatória infinita
Compacidade enumerável
Countably compactness
Espaços de Isbell-Mrówka
General topology
Grupos topológicos
Hiperespaços de Vietoris
Hyperspaces of Vietoris
Infinitary combinatorics
Isbell-Mrówka spaces
Pseudocompacidade
Pseudocompacity
Topologia geral
Topological groups
description We provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258123498160128