Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/ |
Resumo: | We provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov. |
| id |
USP_73940fe78a6932d8c43074ef39e006a3 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-14062022-164023 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groupsEnfraquecimentos de compacidade e normalidade em espaços de Isbell-Mrówka, hiperespaços de Vietoris e grupos AbelianosCombinatória infinitaCompacidade enumerávelCountably compactnessEspaços de Isbell-MrówkaGeneral topologyGrupos topológicosHiperespaços de VietorisHyperspaces of VietorisInfinitary combinatoricsIsbell-Mrówka spacesPseudocompacidadePseudocompacityTopologia geralTopological groupsWe provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov.Nós fornecemos um exemplo de espaço topológico Tychonoff, almost-normal não normal e exploramos almost-normalidade restrita aos espaços de Isbell-Mrówka. Seguindo essa linha de estudo, estudamos almost disjoint families fortemente aleph_0-separadas comparando elas ao que se sabe sobre almost disjoint families normais e pseudonormais. Definimos uma nova família de conjuntos especiais de números reais relacionadas a esses problemas que chamamos de weak lambda-sets. Esse estudo explora algumas questões de Paul Szeptycki e Sergio García-Balan. Nós exploramos as perguntas de John Ginsburg sobre pseudocompacidade e compacidade enumerável de hiperespaços de Vietoris. Em particular, obtivemos um exemplo de um subespaço de beta omega contendo omega cujas todas potências menores do que a característica cardinal h são enumeravelmente compactas, mas cujo hiperespaço de Vietoris não é pseudocompacto. Também exploramos essas perguntas restritas a espaços de Isbell-Mrówka, provando que a existência de uma MAD family cujo hiperespaço de Vietoris de seu espaço de Isbell-Mrówka não é pseudocompacto é equivalente ao número de Baire de omega* ser menor ou igual à c. Também obtivemos um exemplo consistente de um espaço de Isbell-Mrówka deste tipo de cardinalidade omega_2<c. Finalmente, utilizamos forcing para obter uma classificação para grupos Abelianos de não torção de cardinalidade <=2^c que admitem uma topologia enumeravelmente compacta Hausdorff contendo sequências convergentes, parcialmente respondendo uma questão de Dikranjan and Shakhmatov.Biblioteca Digitais de Teses e Dissertações da USPTomita, Artur HideyukiRodrigues, Vinicius de Oliveira2022-06-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-14T18:42:50Zoai:teses.usp.br:tde-14062022-164023Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-14T18:42:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups Enfraquecimentos de compacidade e normalidade em espaços de Isbell-Mrówka, hiperespaços de Vietoris e grupos Abelianos |
| title |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| spellingShingle |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups Rodrigues, Vinicius de Oliveira Combinatória infinita Compacidade enumerável Countably compactness Espaços de Isbell-Mrówka General topology Grupos topológicos Hiperespaços de Vietoris Hyperspaces of Vietoris Infinitary combinatorics Isbell-Mrówka spaces Pseudocompacidade Pseudocompacity Topologia geral Topological groups |
| title_short |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| title_full |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| title_fullStr |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| title_full_unstemmed |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| title_sort |
Weakenings of compactness and normality on Isbell-Mrówka spaces, Hyperspaces of Vietoris and Abelian groups |
| author |
Rodrigues, Vinicius de Oliveira |
| author_facet |
Rodrigues, Vinicius de Oliveira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Tomita, Artur Hideyuki |
| dc.contributor.author.fl_str_mv |
Rodrigues, Vinicius de Oliveira |
| dc.subject.por.fl_str_mv |
Combinatória infinita Compacidade enumerável Countably compactness Espaços de Isbell-Mrówka General topology Grupos topológicos Hiperespaços de Vietoris Hyperspaces of Vietoris Infinitary combinatorics Isbell-Mrówka spaces Pseudocompacidade Pseudocompacity Topologia geral Topological groups |
| topic |
Combinatória infinita Compacidade enumerável Countably compactness Espaços de Isbell-Mrówka General topology Grupos topológicos Hiperespaços de Vietoris Hyperspaces of Vietoris Infinitary combinatorics Isbell-Mrówka spaces Pseudocompacidade Pseudocompacity Topologia geral Topological groups |
| description |
We provide an example of a Tychonoff almost-normal topological space which is not normal and explore almost-normality in the realm of Isbell-Mrówka spaces. Following this line, we study strongly aleph_0-separated almost disjoint families by comparing them with what is known about normal and pseudonormal almost disjoint families. We define a new family of special sets of reals related to these problems which we called weak lambda-sets. This study explores some questions of Paul Szeptycki and Sergio García-Balan. We explore John Ginsburg\'s questions on pseudocompact and countably compact Vietoris hyperspaces. In particular, we provide an example of a subspace of beta omega containing omega whose every power below the cardinal characteristic h is countably compact, but whose Vietoris hyperspace fails to be pseudocompact. We explore the converse implications in this class of spaces. We also study these questions in the realm of Isbell-Mrówka spaces, proving that the existence of a MAD family whose Vietoris hyperspace of its Isbell-Mrówka space is not pseudocompact is equivalent to the Baire number of omega* being less or equal to c. We also provide a consistent example of such an Isbell-Mrówka space of cardinality omega_2<c. Finally, we force a classification of non-torsion Abelian groups of size <= 2^c that admit a Hausdorff countably compact group topology containing convergent sequences, partially answering a question of Dikranjan and Shakhmatov. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-06-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258123498160128 |