Exportação concluída — 

PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Silva, Fábio Santos da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052011-171129/
Resumo: O processo de digitalização da TV em diversos países do mundo tem contribuído para o aumento do volume de programas de TV, o que gera uma sobrecarga de informação. Consequentemente, o usuário está enfrentando dificuldade para encontrar os programas de TV favoritos dentre as várias opções disponíveis. Diante deste cenário, os sistemas de recomendação destacam-se como uma possível solução. Tais sistemas são capazes de filtrar itens relevantes de acordo com as preferências do usuário ou de um grupo de usuários que possuem perfis similares. Entretanto, em diversas recomendações o interesse do usuário pode depender do seu contexto. Assim, torna-se importante estender as abordagens tradicionais de recomendação personalizada por meio da exploração do contexto do usuário, o que poderá melhorar a qualidade das recomendações. Para isso, este trabalho descreve uma infraestrutura de software de suporte ao desenvolvimento e execução de sistemas de recomendação sensíveis ao contexto para TV Digital Interativa - intitulada de PersonalTVware. A solução proposta fornece componentes que implementam técnicas avançadas para recomendação de conteúdo e processamento de contexto. Com isso, os desenvolvedores de sistemas de recomendação concentram esforços na lógica de apresentação de seus sistemas, deixando questões de baixo nível para o PersonalTVware gerenciar. As modelagens de usuário, e do contexto, essenciais para o desenvolvimento do PersonalTVware, são representadas por padrões de metadados flexíveis usados na TV Digital Interativa (MPEG-7 e TV-Anytime), e suas devidas extensões. A arquitetura do PersonalTVware é composta por dois subsistemas: dispositivo do usuário e provedor de serviços. A tarefa de predição de preferências contextuais é baseada em métodos de aprendizagem de máquina, e a filtragem de informação sensível ao contexto tem como base a técnica de filtragem baseada em conteúdo. O conceito de perfil contextual também é apresentado e discutido. Para demonstrar e validar as funcionalidades do PersonalTVware em um cenário de uso, foi desenvolvido um sistema de recomendação sensível ao contexto como estudo de caso.
id USP_73f5c5fbfc0bc4cd90eaba6c9da95d00
oai_identifier_str oai:teses.usp.br:tde-31052011-171129
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.PersonalTVware: an infrastructure to support the context-aware recommender systems for Personalized Digital TV.Aprendizagem de máquinaComputação sensível ao contextoContext-aware computingInteractive Digital TVMachine learningMetadadosMetadataRecommender systemsSistemas de recomendaçãoTV Digital InterativaO processo de digitalização da TV em diversos países do mundo tem contribuído para o aumento do volume de programas de TV, o que gera uma sobrecarga de informação. Consequentemente, o usuário está enfrentando dificuldade para encontrar os programas de TV favoritos dentre as várias opções disponíveis. Diante deste cenário, os sistemas de recomendação destacam-se como uma possível solução. Tais sistemas são capazes de filtrar itens relevantes de acordo com as preferências do usuário ou de um grupo de usuários que possuem perfis similares. Entretanto, em diversas recomendações o interesse do usuário pode depender do seu contexto. Assim, torna-se importante estender as abordagens tradicionais de recomendação personalizada por meio da exploração do contexto do usuário, o que poderá melhorar a qualidade das recomendações. Para isso, este trabalho descreve uma infraestrutura de software de suporte ao desenvolvimento e execução de sistemas de recomendação sensíveis ao contexto para TV Digital Interativa - intitulada de PersonalTVware. A solução proposta fornece componentes que implementam técnicas avançadas para recomendação de conteúdo e processamento de contexto. Com isso, os desenvolvedores de sistemas de recomendação concentram esforços na lógica de apresentação de seus sistemas, deixando questões de baixo nível para o PersonalTVware gerenciar. As modelagens de usuário, e do contexto, essenciais para o desenvolvimento do PersonalTVware, são representadas por padrões de metadados flexíveis usados na TV Digital Interativa (MPEG-7 e TV-Anytime), e suas devidas extensões. A arquitetura do PersonalTVware é composta por dois subsistemas: dispositivo do usuário e provedor de serviços. A tarefa de predição de preferências contextuais é baseada em métodos de aprendizagem de máquina, e a filtragem de informação sensível ao contexto tem como base a técnica de filtragem baseada em conteúdo. O conceito de perfil contextual também é apresentado e discutido. Para demonstrar e validar as funcionalidades do PersonalTVware em um cenário de uso, foi desenvolvido um sistema de recomendação sensível ao contexto como estudo de caso.The process of digitalization of TV in several countries around the world has, contributed to increase the volume of TV programs offered and it leads, to information overload problem. Consequently, the user facing the difficulty to find their favorite TV programs in view of various available options. Within this scenario, the recommender systems stand out as a possible solution. These systems are capable of filtering relevant items according to the user preferences or the group of users who have similar profiles. However, the most of the recommender systems for Interactive Digital TV has rarely take into consideration the users contextual information in carrying out the recommendation. However, in many recommendations the user interest may depend on the context. Thus, it becomes important to extend the traditional approaches to personalized recommendation of TV programs by exploiting the context of user, which may improve the quality of the recommendations. Therefore, this work presents a software infrastructure in an Interactive Digital TV environment to support context-aware personalized recommendation of TV programs entitled PersonalTVware. The proposed solution provides components which implement advanced techniques to recommendation of content and context management. Thus, developers of recommender systems can concentrate efforts on the presentation logic of their systems, leaving low-level questions for the PersonalTVware managing. The modeling of user and context, essential for the development of PersonalTVware, are represented by granular metadata standards used in the Interactive Digital TV field (MPEG-7 and TV-Anytime), and its extensions required. The PersonalTVware architecture is composed by two subsystems: the users device and the service provider. The task of inferring contextual preferences is based on machine learning methods, and context-aware information filtering is based on content-based filtering technique. The concept of contextual user profile is presented and discussed. To demonstrate the functionalities in a usage scenario a context-aware recommender system was developed as a case study applying the PersonalTVware.Biblioteca Digitais de Teses e Dissertações da USPBressan, GraçaSilva, Fábio Santos da2011-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052011-171129/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-31052011-171129Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
PersonalTVware: an infrastructure to support the context-aware recommender systems for Personalized Digital TV.
title PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
spellingShingle PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
Silva, Fábio Santos da
Aprendizagem de máquina
Computação sensível ao contexto
Context-aware computing
Interactive Digital TV
Machine learning
Metadados
Metadata
Recommender systems
Sistemas de recomendação
TV Digital Interativa
title_short PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
title_full PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
title_fullStr PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
title_full_unstemmed PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
title_sort PersonalTVware: uma infraestrutura de suporte a sistemas de recomendação sensíveis ao contexto para TV Digital Personalizada.
author Silva, Fábio Santos da
author_facet Silva, Fábio Santos da
author_role author
dc.contributor.none.fl_str_mv Bressan, Graça
dc.contributor.author.fl_str_mv Silva, Fábio Santos da
dc.subject.por.fl_str_mv Aprendizagem de máquina
Computação sensível ao contexto
Context-aware computing
Interactive Digital TV
Machine learning
Metadados
Metadata
Recommender systems
Sistemas de recomendação
TV Digital Interativa
topic Aprendizagem de máquina
Computação sensível ao contexto
Context-aware computing
Interactive Digital TV
Machine learning
Metadados
Metadata
Recommender systems
Sistemas de recomendação
TV Digital Interativa
description O processo de digitalização da TV em diversos países do mundo tem contribuído para o aumento do volume de programas de TV, o que gera uma sobrecarga de informação. Consequentemente, o usuário está enfrentando dificuldade para encontrar os programas de TV favoritos dentre as várias opções disponíveis. Diante deste cenário, os sistemas de recomendação destacam-se como uma possível solução. Tais sistemas são capazes de filtrar itens relevantes de acordo com as preferências do usuário ou de um grupo de usuários que possuem perfis similares. Entretanto, em diversas recomendações o interesse do usuário pode depender do seu contexto. Assim, torna-se importante estender as abordagens tradicionais de recomendação personalizada por meio da exploração do contexto do usuário, o que poderá melhorar a qualidade das recomendações. Para isso, este trabalho descreve uma infraestrutura de software de suporte ao desenvolvimento e execução de sistemas de recomendação sensíveis ao contexto para TV Digital Interativa - intitulada de PersonalTVware. A solução proposta fornece componentes que implementam técnicas avançadas para recomendação de conteúdo e processamento de contexto. Com isso, os desenvolvedores de sistemas de recomendação concentram esforços na lógica de apresentação de seus sistemas, deixando questões de baixo nível para o PersonalTVware gerenciar. As modelagens de usuário, e do contexto, essenciais para o desenvolvimento do PersonalTVware, são representadas por padrões de metadados flexíveis usados na TV Digital Interativa (MPEG-7 e TV-Anytime), e suas devidas extensões. A arquitetura do PersonalTVware é composta por dois subsistemas: dispositivo do usuário e provedor de serviços. A tarefa de predição de preferências contextuais é baseada em métodos de aprendizagem de máquina, e a filtragem de informação sensível ao contexto tem como base a técnica de filtragem baseada em conteúdo. O conceito de perfil contextual também é apresentado e discutido. Para demonstrar e validar as funcionalidades do PersonalTVware em um cenário de uso, foi desenvolvido um sistema de recomendação sensível ao contexto como estudo de caso.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052011-171129/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-31052011-171129/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258601541861376