Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18162/tde-22052024-174343/ |
Resumo: | Panel flutter is an aeroelastic phenomenon that can cause critical structural failure in aerospace vehicles operating at supersonic speeds. A reliable modelling of such phenomenon is crucial for safely predicting the lifespan of aircraft skin, thus being of great importance to aerospace structural design. The vast majority of works published on this subject treat each skin panel as an isolated structure. In reality, however, aircraft skin is typically composed of large panels mounted over spars, stringers and other types of reinforcement elements. The presence of such stiffening components ends up subdividing the panel into multiple smaller cells that can interact during flutter, thereby making the aeroelastic motion potentially more complex and dangerous. Moreover, stiffeners are also deformable structures, which therefore take part in the dynamics of the problem. In this context, the present work deals with the study and implementation of a computational finite element model for the analysis of nonlinear flutter in stiffened panels. A combination of the Mindlin plate model and the Timoshenko beam model, both with geometric non-linearities, is employed. The model and the analyses tackle both isotropic and laminated panels. The aerodynamic forces are computed through first-order piston theory, which provides good results for high-supersonic flows. The energy equations are discretised via the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain through an iterative Newmark-type integration scheme. The final code is verified and validated through comparison with numerical solutions from the literature. As far as results and analyses are concerned, the present work focuses on three main aspects, thereby aiming to fill an existing gap in panel flutter literature: a) lnvestigating how stiffeners behave during flutter, from a dynamic perspective, and how their vibration affects the overall aeroelastic motion; b) Studying the infiuence of stiffener geometry on such effects; and c) Assessing the inaccuracies of the single-panel model by systematically comparing its results with those from the present multi-cell model. Results reveal novel aeroelastic phenomena arising from the modelling of stiffeners as flexible structural elements. Furthermore, the popular assumption of ideal fixation is proven to be potentially unconservative regarding the onset of flutter and the intensity of vibrations |
| id |
USP_760662add3ad34892d3a8e91c4f3787f |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22052024-174343 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flowsModelagem aeroelástica não linear, pelo método dos elementos finitos, de painéis reforçados em escoamentos supersônicosaeroelasticidade não linearaerospace structuresestruturas aeroespaciaisfinite element modellingflutter de painelmétodo dos elementos finitosnonlinear aeroelasticitynonlínear Tímoshenko beampanei flutterplaca reforçadareinforced platesviga de Timoshenko não linearPanel flutter is an aeroelastic phenomenon that can cause critical structural failure in aerospace vehicles operating at supersonic speeds. A reliable modelling of such phenomenon is crucial for safely predicting the lifespan of aircraft skin, thus being of great importance to aerospace structural design. The vast majority of works published on this subject treat each skin panel as an isolated structure. In reality, however, aircraft skin is typically composed of large panels mounted over spars, stringers and other types of reinforcement elements. The presence of such stiffening components ends up subdividing the panel into multiple smaller cells that can interact during flutter, thereby making the aeroelastic motion potentially more complex and dangerous. Moreover, stiffeners are also deformable structures, which therefore take part in the dynamics of the problem. In this context, the present work deals with the study and implementation of a computational finite element model for the analysis of nonlinear flutter in stiffened panels. A combination of the Mindlin plate model and the Timoshenko beam model, both with geometric non-linearities, is employed. The model and the analyses tackle both isotropic and laminated panels. The aerodynamic forces are computed through first-order piston theory, which provides good results for high-supersonic flows. The energy equations are discretised via the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain through an iterative Newmark-type integration scheme. The final code is verified and validated through comparison with numerical solutions from the literature. As far as results and analyses are concerned, the present work focuses on three main aspects, thereby aiming to fill an existing gap in panel flutter literature: a) lnvestigating how stiffeners behave during flutter, from a dynamic perspective, and how their vibration affects the overall aeroelastic motion; b) Studying the infiuence of stiffener geometry on such effects; and c) Assessing the inaccuracies of the single-panel model by systematically comparing its results with those from the present multi-cell model. Results reveal novel aeroelastic phenomena arising from the modelling of stiffeners as flexible structural elements. Furthermore, the popular assumption of ideal fixation is proven to be potentially unconservative regarding the onset of flutter and the intensity of vibrationsO flutter de painel é um fenômeno aeroelástico que pode lavar a falhas veículos aeroespaciais operando em velocidades supersônicas. Uma modelagem confiável do fenômeno é crucial para prever de maneira segura a vida útil de revestimentos aeronáuticos, sendo, portanto, de grande importância para o projeto de estruturas aeroespaciais. A maioria dos trabalhos publicados sobre este tema trata cada painel como uma estrutura isolada. Na realidade, entretanto, revestimentos aeronáuticos são tipicamente compostos por grandes painéis montados sobre longarinas, stringers e outros elementos de reforço. A presença destes elementos acaba subdividindo o painel em múltiplas células menores capazes de interagir durante o flutter - tornando, com isso, o movimento aeroelástico potencialmente mais complexo e perigoso. Ademais, reforçadores também são estruturas deformáveis, que, portanto, participam da dinâmica do problema. Neste contexto, o presente trabalho trata do estudo e implementação de um modelo computacional em elementos finitos para análise de flutter em painéis reforçados. Emprega-se uma combinação do modelo de placa de Mindlin com o modelo de viga de Timoshenko, incluindo não-linearidade geométrica. O modelo e as análises abordam tanto painéis isotrópicos quanto laminados. A aerodinâmica é simulada pela teoria de pistão, adequada para escoamentos alto-supersônicos. As equações de energia são discretizadas pelo Método dos Elementos Finitos, resultando em equações de movimento que são resolvidas no domínio do tempo por meio de um método de Newmark iterativo. O código final é verificado via comparação com soluções numéricas encontradas na literatura. Em termos de análises, este trabalho foca em três aspectos, com o objetivo de preencher uma lacuna da literatura específica: a) Investigar como reforçadores comportam-se durante o flutter, do ponto de vista dinâmico, e como sua vibração afeta o movimento aeroelástico como um todo; b) Estudar a influência da geometria dos reforçadores sobre tais efeitos; e c) Avaliar as imprecisões do modelo de painel isolado por meio de uma comparação sistemática entre os resultados deste modelo e aqueles gerados pela presente abordagem multi-célula. Resultados revelam novos fenômenos aeoelásticos oriundos da modelagem dos reforçadores como elementos estruturais flexíveis. Ademais, demonstra-se que a popular hipótese de fixação ideal pode ser altamente não conservadora no que diz respeito à condição crítica de flutter e à intensidade das vibraçõesBiblioteca Digitais de Teses e Dissertações da USPMarques, Flavio DonizetiPacheco, Douglas Ramalho Queiroz2018-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18162/tde-22052024-174343/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-23T20:15:02Zoai:teses.usp.br:tde-22052024-174343Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-23T20:15:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows Modelagem aeroelástica não linear, pelo método dos elementos finitos, de painéis reforçados em escoamentos supersônicos |
| title |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| spellingShingle |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows Pacheco, Douglas Ramalho Queiroz aeroelasticidade não linear aerospace structures estruturas aeroespaciais finite element modelling flutter de painel método dos elementos finitos nonlinear aeroelasticity nonlínear Tímoshenko beam panei flutter placa reforçada reinforced plates viga de Timoshenko não linear |
| title_short |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| title_full |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| title_fullStr |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| title_full_unstemmed |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| title_sort |
Nonlinear finite element aeroelastic modelling of reinforced skin panels in supersonic flows |
| author |
Pacheco, Douglas Ramalho Queiroz |
| author_facet |
Pacheco, Douglas Ramalho Queiroz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Marques, Flavio Donizeti |
| dc.contributor.author.fl_str_mv |
Pacheco, Douglas Ramalho Queiroz |
| dc.subject.por.fl_str_mv |
aeroelasticidade não linear aerospace structures estruturas aeroespaciais finite element modelling flutter de painel método dos elementos finitos nonlinear aeroelasticity nonlínear Tímoshenko beam panei flutter placa reforçada reinforced plates viga de Timoshenko não linear |
| topic |
aeroelasticidade não linear aerospace structures estruturas aeroespaciais finite element modelling flutter de painel método dos elementos finitos nonlinear aeroelasticity nonlínear Tímoshenko beam panei flutter placa reforçada reinforced plates viga de Timoshenko não linear |
| description |
Panel flutter is an aeroelastic phenomenon that can cause critical structural failure in aerospace vehicles operating at supersonic speeds. A reliable modelling of such phenomenon is crucial for safely predicting the lifespan of aircraft skin, thus being of great importance to aerospace structural design. The vast majority of works published on this subject treat each skin panel as an isolated structure. In reality, however, aircraft skin is typically composed of large panels mounted over spars, stringers and other types of reinforcement elements. The presence of such stiffening components ends up subdividing the panel into multiple smaller cells that can interact during flutter, thereby making the aeroelastic motion potentially more complex and dangerous. Moreover, stiffeners are also deformable structures, which therefore take part in the dynamics of the problem. In this context, the present work deals with the study and implementation of a computational finite element model for the analysis of nonlinear flutter in stiffened panels. A combination of the Mindlin plate model and the Timoshenko beam model, both with geometric non-linearities, is employed. The model and the analyses tackle both isotropic and laminated panels. The aerodynamic forces are computed through first-order piston theory, which provides good results for high-supersonic flows. The energy equations are discretised via the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain through an iterative Newmark-type integration scheme. The final code is verified and validated through comparison with numerical solutions from the literature. As far as results and analyses are concerned, the present work focuses on three main aspects, thereby aiming to fill an existing gap in panel flutter literature: a) lnvestigating how stiffeners behave during flutter, from a dynamic perspective, and how their vibration affects the overall aeroelastic motion; b) Studying the infiuence of stiffener geometry on such effects; and c) Assessing the inaccuracies of the single-panel model by systematically comparing its results with those from the present multi-cell model. Results reveal novel aeroelastic phenomena arising from the modelling of stiffeners as flexible structural elements. Furthermore, the popular assumption of ideal fixation is proven to be potentially unconservative regarding the onset of flutter and the intensity of vibrations |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-08-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18162/tde-22052024-174343/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18162/tde-22052024-174343/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258386858508288 |