Mineração de dados em redes complexas: estrutura e dinâmica

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Arruda, Guilherme Ferraz de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/
Resumo: A teoria das redes complexas é uma área altamente interdisciplinar que oferece recursos para o estudo dos mais variados tipos de sistemas complexos, desde o cérebro até a sociedade. Muitos problemas da natureza podem ser modelados como redes, tais como: as interações protéicas, organizações sociais, o mercado financeiro, a Internet e a World Wide Web. A organização de todos esses sistemas complexos pode ser representada por grafos, isto é, vértices conectados por arestas. Tais topologias têm uma influencia fundamental sobre muitos processos dinâmicos. Por exemplo, roteadores altamente conectados são fundamentais para manter o tráfego na Internet, enquanto pessoas que possuem um grande número de contatos sociais podem contaminar um grande número de outros indivíduos. Ao mesmo tempo, estudos têm mostrado que a estrutura do cérebro esta relacionada com doenças neurológicas, como a epilepsia, que está ligada a fenômenos de sincronização. Nesse trabalho, apresentamos como técnicas de mineração de dados podem ser usadas para estudar a relação entre topologias de redes complexas e processos dinâmicos. Tal estudo será realizado com a simulação de fenômenos de sincronização, falhas, ataques e propagação de epidemias. A estrutura das redes será caracterizada através de métodos de mineração de dados, que permitirão classificar redes de acordo com um conjunto de modelos e determinar padrões de conexões presentes na organização de diferentes tipos de sistemas complexos. As análises serão realizadas com aplicações em neurociências, biologia de sistemas, redes sociais e Internet
id USP_785f1230b261d2c2455e649124bdabc7
oai_identifier_str oai:teses.usp.br:tde-25062013-085958
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Mineração de dados em redes complexas: estrutura e dinâmicaData mining in complex networks: structure and dynamicsComplex networksComplex systemsData mining and machine learningMineração de dados e aprendizado de máquinaRedes complexasSistemas complexosA teoria das redes complexas é uma área altamente interdisciplinar que oferece recursos para o estudo dos mais variados tipos de sistemas complexos, desde o cérebro até a sociedade. Muitos problemas da natureza podem ser modelados como redes, tais como: as interações protéicas, organizações sociais, o mercado financeiro, a Internet e a World Wide Web. A organização de todos esses sistemas complexos pode ser representada por grafos, isto é, vértices conectados por arestas. Tais topologias têm uma influencia fundamental sobre muitos processos dinâmicos. Por exemplo, roteadores altamente conectados são fundamentais para manter o tráfego na Internet, enquanto pessoas que possuem um grande número de contatos sociais podem contaminar um grande número de outros indivíduos. Ao mesmo tempo, estudos têm mostrado que a estrutura do cérebro esta relacionada com doenças neurológicas, como a epilepsia, que está ligada a fenômenos de sincronização. Nesse trabalho, apresentamos como técnicas de mineração de dados podem ser usadas para estudar a relação entre topologias de redes complexas e processos dinâmicos. Tal estudo será realizado com a simulação de fenômenos de sincronização, falhas, ataques e propagação de epidemias. A estrutura das redes será caracterizada através de métodos de mineração de dados, que permitirão classificar redes de acordo com um conjunto de modelos e determinar padrões de conexões presentes na organização de diferentes tipos de sistemas complexos. As análises serão realizadas com aplicações em neurociências, biologia de sistemas, redes sociais e InternetThe theory of complex networks is a highly interdisciplinary reseach area offering resources for the study of various types of complex systems, from the brain to the society. Many problems of nature can be modeled as networks, such as protein interactions, social organizations, the financial market, the Internet and World Wide Web. The organization of all these complex systems can be represented by graphs, i.e. a set of vertices connected by edges. Such topologies have a fundamental influence on many dynamic processes. For example, highly connected routers are essential to keep traffic on the Internet, while people who have a large number of social contacts may infect many other individuals. Indeed, studies have shown that the structure of brain is related to neurological conditions such as epilepsy, which is relatad to synchronization phenomena. In this text, we present how data mining techniques data can be used to study the relation between complex network topologies and dynamic processes. This study will be conducted with the simulation of synchronization, failures, attacks and the epidemics spreading. The structure of the networks will be characterized by data mining methods, which allow classifying according to a set of theoretical models and to determine patterns of connections present in the organization of different types of complex systems. The analyzes will be performed with applications in neuroscience, systems biology, social networks and the InternetBiblioteca Digitais de Teses e Dissertações da USPRodrigues, Francisco AparecidoArruda, Guilherme Ferraz de2013-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-25062013-085958Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mineração de dados em redes complexas: estrutura e dinâmica
Data mining in complex networks: structure and dynamics
title Mineração de dados em redes complexas: estrutura e dinâmica
spellingShingle Mineração de dados em redes complexas: estrutura e dinâmica
Arruda, Guilherme Ferraz de
Complex networks
Complex systems
Data mining and machine learning
Mineração de dados e aprendizado de máquina
Redes complexas
Sistemas complexos
title_short Mineração de dados em redes complexas: estrutura e dinâmica
title_full Mineração de dados em redes complexas: estrutura e dinâmica
title_fullStr Mineração de dados em redes complexas: estrutura e dinâmica
title_full_unstemmed Mineração de dados em redes complexas: estrutura e dinâmica
title_sort Mineração de dados em redes complexas: estrutura e dinâmica
author Arruda, Guilherme Ferraz de
author_facet Arruda, Guilherme Ferraz de
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Francisco Aparecido
dc.contributor.author.fl_str_mv Arruda, Guilherme Ferraz de
dc.subject.por.fl_str_mv Complex networks
Complex systems
Data mining and machine learning
Mineração de dados e aprendizado de máquina
Redes complexas
Sistemas complexos
topic Complex networks
Complex systems
Data mining and machine learning
Mineração de dados e aprendizado de máquina
Redes complexas
Sistemas complexos
description A teoria das redes complexas é uma área altamente interdisciplinar que oferece recursos para o estudo dos mais variados tipos de sistemas complexos, desde o cérebro até a sociedade. Muitos problemas da natureza podem ser modelados como redes, tais como: as interações protéicas, organizações sociais, o mercado financeiro, a Internet e a World Wide Web. A organização de todos esses sistemas complexos pode ser representada por grafos, isto é, vértices conectados por arestas. Tais topologias têm uma influencia fundamental sobre muitos processos dinâmicos. Por exemplo, roteadores altamente conectados são fundamentais para manter o tráfego na Internet, enquanto pessoas que possuem um grande número de contatos sociais podem contaminar um grande número de outros indivíduos. Ao mesmo tempo, estudos têm mostrado que a estrutura do cérebro esta relacionada com doenças neurológicas, como a epilepsia, que está ligada a fenômenos de sincronização. Nesse trabalho, apresentamos como técnicas de mineração de dados podem ser usadas para estudar a relação entre topologias de redes complexas e processos dinâmicos. Tal estudo será realizado com a simulação de fenômenos de sincronização, falhas, ataques e propagação de epidemias. A estrutura das redes será caracterizada através de métodos de mineração de dados, que permitirão classificar redes de acordo com um conjunto de modelos e determinar padrões de conexões presentes na organização de diferentes tipos de sistemas complexos. As análises serão realizadas com aplicações em neurociências, biologia de sistemas, redes sociais e Internet
publishDate 2013
dc.date.none.fl_str_mv 2013-04-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258441052061696