Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/18/18154/tde-04092013-105844/ |
Resumo: | Problemas ocasionados por perturbações na qualidade da energia elétrica (QEE) podem provocar sérios prejuízos, tanto de cunho social, quanto financeiros, aos clientes conectados ao sistema elétrico de potência como um todo. Neste contexto, os clientes que mais sofrem são os clientes industriais, pois estes possuem cargas sensíveis a vários distúrbios associados à falta da QEE. Sendo assim, para adoções de medidas preventivas, ou corretivas, que melhorem os índices de QEE, faz-se necessário um monitoramento dos sistemas elétricos que permita um melhor acompanhamento da ocorrência dos distúrbios. Nesta pesquisa é proposta a modelagem do problema de alocação ótima de monitores de QEE em sistemas de distribuição com múltiplos objetivos, os quais são: minimização do custo do monitoramento, minimização da ambiguidade topológica, maximização do monitoramento das cargas, maximização da quantidade de ramais monitorados, minimização da quantidade de afundamentos não monitorados, e maximização da redundância do monitoramento dos afundamentos. Na resolução do problema foi utilizado o Algoritmo Evolutivo Multiobjetivo com Tabelas (AEMT), adotado por ter boa capacidade de resolução com muitos objetivos. Os resultados obtidos permitiram observar que o AEMT forneceu as fronteiras de Pareto com soluções diversificadas e bem distribuídas ao longo da mesma, mostrando-se de grande relevância para o planejamento de sistemas de monitoramento da QEE em sistemas de distribuição de energia. A principal contribuição desta tese é o fornecimento de um modelo que permite às empresas de energia avaliar os investimentos que farão nos seus sistemas de monitoramento considerando seis critérios distintos, permitindo uma maior flexibilidade no estabelecimento do plano de monitoramento e uma melhor análise do custo/benefício considerando os seis aspectos abordados. |
| id |
USP_78f0fd7e6dd8f3e02add89d58079c91c |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04092013-105844 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétricaMultiobjective modeling for the problem of allocation of power quality monitors in electrical distribution systemAlgoritmos evolutivos multiobjetivoAllocation monitorsAlocação de monitoresDistribution systemsElectrical power distribution systemsMultiobjective evolutionary algorithmsMultiobjective optimizationOtimização multiobjetivoPower qualityQualidade da energia elétricaSistemas de distribuiçãoSistemas elétricos de potênciaProblemas ocasionados por perturbações na qualidade da energia elétrica (QEE) podem provocar sérios prejuízos, tanto de cunho social, quanto financeiros, aos clientes conectados ao sistema elétrico de potência como um todo. Neste contexto, os clientes que mais sofrem são os clientes industriais, pois estes possuem cargas sensíveis a vários distúrbios associados à falta da QEE. Sendo assim, para adoções de medidas preventivas, ou corretivas, que melhorem os índices de QEE, faz-se necessário um monitoramento dos sistemas elétricos que permita um melhor acompanhamento da ocorrência dos distúrbios. Nesta pesquisa é proposta a modelagem do problema de alocação ótima de monitores de QEE em sistemas de distribuição com múltiplos objetivos, os quais são: minimização do custo do monitoramento, minimização da ambiguidade topológica, maximização do monitoramento das cargas, maximização da quantidade de ramais monitorados, minimização da quantidade de afundamentos não monitorados, e maximização da redundância do monitoramento dos afundamentos. Na resolução do problema foi utilizado o Algoritmo Evolutivo Multiobjetivo com Tabelas (AEMT), adotado por ter boa capacidade de resolução com muitos objetivos. Os resultados obtidos permitiram observar que o AEMT forneceu as fronteiras de Pareto com soluções diversificadas e bem distribuídas ao longo da mesma, mostrando-se de grande relevância para o planejamento de sistemas de monitoramento da QEE em sistemas de distribuição de energia. A principal contribuição desta tese é o fornecimento de um modelo que permite às empresas de energia avaliar os investimentos que farão nos seus sistemas de monitoramento considerando seis critérios distintos, permitindo uma maior flexibilidade no estabelecimento do plano de monitoramento e uma melhor análise do custo/benefício considerando os seis aspectos abordados.Problems arising from disturbances in power quality (PQ) can cause serious damage, both social, and financial, to customers connected to the electrical power distribution systems as a whole. In this context, the customers who suer most are industrial customers, as they have loads sensitive to various disturbances associated with the lack of PQ. Thus, in order to adopt preventive or corrective measures to improve PQ rates, it is necessary to monitor electrical systems to allow better oversight of the occurrence of disturbances. In this research, the proposal is to model the problem of optimal allocation of power quality monitors in distribution systems with multiple objectives. The multiple objectives are: minimizing the monitoring cost, minimizing ambiguities in topology, maximizing the load monitoring, maximizing the area monitoring, minimizing the voltage sag unmonitored, and maximizing the redundancy in the sag monitoring. In solving the problem, a Multiobjective Evolutionary Algorithm with Tables (MEAT) was adopted due to ability to deal with many objectives. The results show that the AMET finds a set of ecient solutions that are diversified and well-distributed along the Pareto Front, and that they are highly relevant for planning of PQ monitoring systems in electrical power distribution systems. The main contribution of this thesis is to provide a model that allows utilities better evaluate investments that they will make in their monitoring systems comprising six dierent criteria, allowing greater flexibility in establishing the monitoring plan and a better analysis of cost/benefit considering the six aspects.Biblioteca Digitais de Teses e Dissertações da USPOleskovicz, MárioBranco, Hermes Manoel Galvão Castelo2013-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18154/tde-04092013-105844/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:36Zoai:teses.usp.br:tde-04092013-105844Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica Multiobjective modeling for the problem of allocation of power quality monitors in electrical distribution system |
| title |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| spellingShingle |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica Branco, Hermes Manoel Galvão Castelo Algoritmos evolutivos multiobjetivo Allocation monitors Alocação de monitores Distribution systems Electrical power distribution systems Multiobjective evolutionary algorithms Multiobjective optimization Otimização multiobjetivo Power quality Qualidade da energia elétrica Sistemas de distribuição Sistemas elétricos de potência |
| title_short |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| title_full |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| title_fullStr |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| title_full_unstemmed |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| title_sort |
Modelagem multiobjetivo para o problema da alocação de monitores de qualidade da energia em sistemas de distribuição de energia elétrica |
| author |
Branco, Hermes Manoel Galvão Castelo |
| author_facet |
Branco, Hermes Manoel Galvão Castelo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oleskovicz, Mário |
| dc.contributor.author.fl_str_mv |
Branco, Hermes Manoel Galvão Castelo |
| dc.subject.por.fl_str_mv |
Algoritmos evolutivos multiobjetivo Allocation monitors Alocação de monitores Distribution systems Electrical power distribution systems Multiobjective evolutionary algorithms Multiobjective optimization Otimização multiobjetivo Power quality Qualidade da energia elétrica Sistemas de distribuição Sistemas elétricos de potência |
| topic |
Algoritmos evolutivos multiobjetivo Allocation monitors Alocação de monitores Distribution systems Electrical power distribution systems Multiobjective evolutionary algorithms Multiobjective optimization Otimização multiobjetivo Power quality Qualidade da energia elétrica Sistemas de distribuição Sistemas elétricos de potência |
| description |
Problemas ocasionados por perturbações na qualidade da energia elétrica (QEE) podem provocar sérios prejuízos, tanto de cunho social, quanto financeiros, aos clientes conectados ao sistema elétrico de potência como um todo. Neste contexto, os clientes que mais sofrem são os clientes industriais, pois estes possuem cargas sensíveis a vários distúrbios associados à falta da QEE. Sendo assim, para adoções de medidas preventivas, ou corretivas, que melhorem os índices de QEE, faz-se necessário um monitoramento dos sistemas elétricos que permita um melhor acompanhamento da ocorrência dos distúrbios. Nesta pesquisa é proposta a modelagem do problema de alocação ótima de monitores de QEE em sistemas de distribuição com múltiplos objetivos, os quais são: minimização do custo do monitoramento, minimização da ambiguidade topológica, maximização do monitoramento das cargas, maximização da quantidade de ramais monitorados, minimização da quantidade de afundamentos não monitorados, e maximização da redundância do monitoramento dos afundamentos. Na resolução do problema foi utilizado o Algoritmo Evolutivo Multiobjetivo com Tabelas (AEMT), adotado por ter boa capacidade de resolução com muitos objetivos. Os resultados obtidos permitiram observar que o AEMT forneceu as fronteiras de Pareto com soluções diversificadas e bem distribuídas ao longo da mesma, mostrando-se de grande relevância para o planejamento de sistemas de monitoramento da QEE em sistemas de distribuição de energia. A principal contribuição desta tese é o fornecimento de um modelo que permite às empresas de energia avaliar os investimentos que farão nos seus sistemas de monitoramento considerando seis critérios distintos, permitindo uma maior flexibilidade no estabelecimento do plano de monitoramento e uma melhor análise do custo/benefício considerando os seis aspectos abordados. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-07-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18154/tde-04092013-105844/ |
| url |
http://www.teses.usp.br/teses/disponiveis/18/18154/tde-04092013-105844/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257860837212160 |