The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Sarti, Danilo Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-18092019-090800/
Resumo: Statistical analysis is based on an elementary paradigm and the relationship between probabilistic inductive inference, generation and validation of models, and the use of such information in decisions within a specific domain of knowledge. Additionally, techniques can be used to design specific experiments, such as the multi-environmental trials MET, to study the interaction between genotypes and environments. The fitting of probability distributions to data from phenomena allows the knowledge of the behavior of random variables and the later usage of such models in computational simulation. This procedure was carried out in the adjustment of models for maize grains weight, obtained via multi environmental trials. Several methods of adjustment of distribution and mixtures of normal distributions by the EM algorithm were used. The data were obtained through the use of scrapping with software R. Adjusted models were used to simulate, through computational methods implemented in language R, data with behavior known in parametric terms, generating a table that simulates the interaction between genotype and environment factors. Such simulated data were used to verify and compare models based on multivariate analysis, namely AMMI, weighted AMMI and GGE for the study of genotype environment interaction GxE. The results demonstrated the great effectiveness of the models in capturing the properties of the simulated data, contextualizing them as informational tools in the development of new products.
id USP_7958218031f8ca656ce0af37b3c63ab6
oai_identifier_str oai:teses.usp.br:tde-18092019-090800
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environmentO paradigma estatístico: análise probabilística e multivariada aplicadas via simulação computacional no contexto da interação genótipo ambienteAjuste probabilísticoAnálise multivariadaComputational simulationGxE interactionInteração genotipoambientalMultivariate analysisProbabilistic fittingRaspagem de dadosScrapping; R programmingSimulação computacionalSoftware RStatistical analysis is based on an elementary paradigm and the relationship between probabilistic inductive inference, generation and validation of models, and the use of such information in decisions within a specific domain of knowledge. Additionally, techniques can be used to design specific experiments, such as the multi-environmental trials MET, to study the interaction between genotypes and environments. The fitting of probability distributions to data from phenomena allows the knowledge of the behavior of random variables and the later usage of such models in computational simulation. This procedure was carried out in the adjustment of models for maize grains weight, obtained via multi environmental trials. Several methods of adjustment of distribution and mixtures of normal distributions by the EM algorithm were used. The data were obtained through the use of scrapping with software R. Adjusted models were used to simulate, through computational methods implemented in language R, data with behavior known in parametric terms, generating a table that simulates the interaction between genotype and environment factors. Such simulated data were used to verify and compare models based on multivariate analysis, namely AMMI, weighted AMMI and GGE for the study of genotype environment interaction GxE. The results demonstrated the great effectiveness of the models in capturing the properties of the simulated data, contextualizing them as informational tools in the development of new products.A estatística fundamenta-se em um paradigma elementar, baseado na relação entre a inferência indutiva probabilística, geração e validação de modelos e o uso de tais informações como subsídio em decisões em um domínio específico de conhecimento. Aliado a isso, técnicas podem ser utilizadas para delinear tipos específicos de experimentos, como os ensaios multi ambientais MET para estudos de interação entre genótipos e ambientes. O ajuste de distribuição de probabilidades a dados provenientes de fenômenos permite o conhecimento do comportamento de variáveis aleatórias e posterior uso de tais modelos em simulação computacional. Tal procedimento foi realizado no ajuste de modelos para peso de grãos de genótipos de milho em ensaios multi ambientais, através de diversos métodos de ajuste de distribuição e mixturas de distribuições normais pelo algoritmo EM. Os dados foram obtidos através do uso de scrapping via software R. Por sua vez, os modelos ajustados foram utilizados para simular, através de métodos computacionais implementados em linguagem R, dados com comportamento conhecido em termos paramétricos, através de uma tabela que simula a interação entre os fatores genótipo e ambiente. Tais dados simulados foram utilizados para verificar, e comparar os modelos baseados em análise multivariada de dados, a saber AMMI, AMMI ponderado e GGE, para o estudo da interação genótipo ambiente (GxE). Os resultados demonstraram a grande efetividade dos modelos em captar as propriedades dos dados simulados, contextualizando-os como ferramentas informacionais no desenvolvimento de novos produtos.Biblioteca Digitais de Teses e Dissertações da USPDias, Carlos Tadeu dos SantosSarti, Danilo Augusto2019-08-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-18092019-090800/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-11-08T22:16:00Zoai:teses.usp.br:tde-18092019-090800Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T22:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
O paradigma estatístico: análise probabilística e multivariada aplicadas via simulação computacional no contexto da interação genótipo ambiente
title The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
spellingShingle The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
Sarti, Danilo Augusto
Ajuste probabilístico
Análise multivariada
Computational simulation
GxE interaction
Interação genotipoambiental
Multivariate analysis
Probabilistic fitting
Raspagem de dados
Scrapping; R programming
Simulação computacional
Software R
title_short The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
title_full The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
title_fullStr The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
title_full_unstemmed The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
title_sort The statistical paradigm: probabilistic and multivariate analysis applied through computational simulation in the interaction between genotype x environment
author Sarti, Danilo Augusto
author_facet Sarti, Danilo Augusto
author_role author
dc.contributor.none.fl_str_mv Dias, Carlos Tadeu dos Santos
dc.contributor.author.fl_str_mv Sarti, Danilo Augusto
dc.subject.por.fl_str_mv Ajuste probabilístico
Análise multivariada
Computational simulation
GxE interaction
Interação genotipoambiental
Multivariate analysis
Probabilistic fitting
Raspagem de dados
Scrapping; R programming
Simulação computacional
Software R
topic Ajuste probabilístico
Análise multivariada
Computational simulation
GxE interaction
Interação genotipoambiental
Multivariate analysis
Probabilistic fitting
Raspagem de dados
Scrapping; R programming
Simulação computacional
Software R
description Statistical analysis is based on an elementary paradigm and the relationship between probabilistic inductive inference, generation and validation of models, and the use of such information in decisions within a specific domain of knowledge. Additionally, techniques can be used to design specific experiments, such as the multi-environmental trials MET, to study the interaction between genotypes and environments. The fitting of probability distributions to data from phenomena allows the knowledge of the behavior of random variables and the later usage of such models in computational simulation. This procedure was carried out in the adjustment of models for maize grains weight, obtained via multi environmental trials. Several methods of adjustment of distribution and mixtures of normal distributions by the EM algorithm were used. The data were obtained through the use of scrapping with software R. Adjusted models were used to simulate, through computational methods implemented in language R, data with behavior known in parametric terms, generating a table that simulates the interaction between genotype and environment factors. Such simulated data were used to verify and compare models based on multivariate analysis, namely AMMI, weighted AMMI and GGE for the study of genotype environment interaction GxE. The results demonstrated the great effectiveness of the models in capturing the properties of the simulated data, contextualizing them as informational tools in the development of new products.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-18092019-090800/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-18092019-090800/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258251140268032