Emergent quantum phenomena uncovered by extreme conditions and peculiar defects

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Rabello, Aryella Faé
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/
Resumo: This thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role.
id USP_7aa232c2f7c46fc7e3d039728f4f60be
oai_identifier_str oai:teses.usp.br:tde-14012026-162938
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Emergent quantum phenomena uncovered by extreme conditions and peculiar defectsFenômenos quânticos emergentes revelados por condições extremas e defeitos peculiaresCondições extremasDesordemDisorderExtreme conditionsFeGa3.FeGa3.Sistemas fortemente correlacionadosStrongly correlated systemsThis thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role.Esta tese investiga fenômenos quânticos em materiais correlacionados por meio do estudo de suas propriedades físicas sob condições extremas, incluindo baixas temperaturas (T até 1,5 K), altas pressões (P até 38 GPa) e campos magnéticos (B até 9 T). Os diagramas de fase TPB resultantes fornecem uma base para compreender as interações entre os graus de liberdade eletrônico, magnético e estrutural que determinam as escalas de baixa energia que governam o comportamento quântico coletivo. Além disso, este trabalho examina interações induzidas por desordem em materiais quânticos, com o objetivo de esclarecer o papel de defeitos atômicos em sistemas quânticos de muitos corpos. O foco principal desta tese é o FeGa3, um semicondutor intermetálico de gap estreito que serve como sistema modelo para o estudo da influência de defeitos atômicos em estados eletrônicos correlacionados. Por meio da comparação sistemática entre FeGa3 pristino e amostras contendo defeitos antisítio de Fe (Fe0.258Ga0.742), este estudo mostra como defeitos estruturais modificam os estados fundamentais eletrônico e magnético. Medidas de difração de raios X por luz síncrotron sob alta pressão, transporte elétrico e espectroscopia Mossbauer demonstram que a desordem por antisítio desestabiliza o estado semicondutor não magnético, levando à formação de momentos magnéticos locais, estados eletrônicos dentro do gap e a uma transição induzida por pressão para uma fase magneticamente correlacionada. Esses resultados indicam que defeitos antisítio desempenham um papel ativo na modificação das propriedades eletrônicas e magnéticas do sistema. Além do FeGa3, a tese inclui investigações complementares de outros materiais quânticos apresentadas nos apêndices. No Fe0.05ZrTe2, a espectroscopia Mössbauer em baixas temperaturas foi utilizada para investigar uma possível transição de onda de densidade de carga (CDW), ilustrando a aplicabilidade dessa técnica a fenômenos eletrônicos coletivos. Em um estudo separado, o SnO foi investigado sob pressão e campo magnético combinados, revelando o surgimento de um segundo domo supercondutor no diagrama de fase temperaturapressãocampo magnético. Esse resultado ressalta a relevância de medidas de transporte elétrico realizadas sob condições extremas simultâneas no laboratório LQMEC-IFUSP. De modo geral, este trabalho contribui para a compreensão de como pressão, desordem e campos externos influenciam materiais quânticos correlacionados. Ao esclarecer os mecanismos que governam os sistemas investigados, os resultados aqui apresentados fornecem uma base para a exploração e o controle de estados quânticos em materiais nos quais defeitos e parâmetros externos de ajuste desempenham um papel central.Biblioteca Digitais de Teses e Dissertações da USPJimenez, Julio Antonio LarreaRabello, Aryella Faé2025-12-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2026-01-16T19:12:02Zoai:teses.usp.br:tde-14012026-162938Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212026-01-16T19:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
Fenômenos quânticos emergentes revelados por condições extremas e defeitos peculiares
title Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
spellingShingle Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
Rabello, Aryella Faé
Condições extremas
Desordem
Disorder
Extreme conditions
FeGa3.
FeGa3.
Sistemas fortemente correlacionados
Strongly correlated systems
title_short Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
title_full Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
title_fullStr Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
title_full_unstemmed Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
title_sort Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
author Rabello, Aryella Faé
author_facet Rabello, Aryella Faé
author_role author
dc.contributor.none.fl_str_mv Jimenez, Julio Antonio Larrea
dc.contributor.author.fl_str_mv Rabello, Aryella Faé
dc.subject.por.fl_str_mv Condições extremas
Desordem
Disorder
Extreme conditions
FeGa3.
FeGa3.
Sistemas fortemente correlacionados
Strongly correlated systems
topic Condições extremas
Desordem
Disorder
Extreme conditions
FeGa3.
FeGa3.
Sistemas fortemente correlacionados
Strongly correlated systems
description This thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1857669978894893056