Emergent quantum phenomena uncovered by extreme conditions and peculiar defects
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/ |
Resumo: | This thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role. |
| id |
USP_7aa232c2f7c46fc7e3d039728f4f60be |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-14012026-162938 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defectsFenômenos quânticos emergentes revelados por condições extremas e defeitos peculiaresCondições extremasDesordemDisorderExtreme conditionsFeGa3.FeGa3.Sistemas fortemente correlacionadosStrongly correlated systemsThis thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role.Esta tese investiga fenômenos quânticos em materiais correlacionados por meio do estudo de suas propriedades físicas sob condições extremas, incluindo baixas temperaturas (T até 1,5 K), altas pressões (P até 38 GPa) e campos magnéticos (B até 9 T). Os diagramas de fase TPB resultantes fornecem uma base para compreender as interações entre os graus de liberdade eletrônico, magnético e estrutural que determinam as escalas de baixa energia que governam o comportamento quântico coletivo. Além disso, este trabalho examina interações induzidas por desordem em materiais quânticos, com o objetivo de esclarecer o papel de defeitos atômicos em sistemas quânticos de muitos corpos. O foco principal desta tese é o FeGa3, um semicondutor intermetálico de gap estreito que serve como sistema modelo para o estudo da influência de defeitos atômicos em estados eletrônicos correlacionados. Por meio da comparação sistemática entre FeGa3 pristino e amostras contendo defeitos antisítio de Fe (Fe0.258Ga0.742), este estudo mostra como defeitos estruturais modificam os estados fundamentais eletrônico e magnético. Medidas de difração de raios X por luz síncrotron sob alta pressão, transporte elétrico e espectroscopia Mossbauer demonstram que a desordem por antisítio desestabiliza o estado semicondutor não magnético, levando à formação de momentos magnéticos locais, estados eletrônicos dentro do gap e a uma transição induzida por pressão para uma fase magneticamente correlacionada. Esses resultados indicam que defeitos antisítio desempenham um papel ativo na modificação das propriedades eletrônicas e magnéticas do sistema. Além do FeGa3, a tese inclui investigações complementares de outros materiais quânticos apresentadas nos apêndices. No Fe0.05ZrTe2, a espectroscopia Mössbauer em baixas temperaturas foi utilizada para investigar uma possível transição de onda de densidade de carga (CDW), ilustrando a aplicabilidade dessa técnica a fenômenos eletrônicos coletivos. Em um estudo separado, o SnO foi investigado sob pressão e campo magnético combinados, revelando o surgimento de um segundo domo supercondutor no diagrama de fase temperaturapressãocampo magnético. Esse resultado ressalta a relevância de medidas de transporte elétrico realizadas sob condições extremas simultâneas no laboratório LQMEC-IFUSP. De modo geral, este trabalho contribui para a compreensão de como pressão, desordem e campos externos influenciam materiais quânticos correlacionados. Ao esclarecer os mecanismos que governam os sistemas investigados, os resultados aqui apresentados fornecem uma base para a exploração e o controle de estados quânticos em materiais nos quais defeitos e parâmetros externos de ajuste desempenham um papel central.Biblioteca Digitais de Teses e Dissertações da USPJimenez, Julio Antonio LarreaRabello, Aryella Faé2025-12-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2026-01-16T19:12:02Zoai:teses.usp.br:tde-14012026-162938Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212026-01-16T19:12:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects Fenômenos quânticos emergentes revelados por condições extremas e defeitos peculiares |
| title |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| spellingShingle |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects Rabello, Aryella Faé Condições extremas Desordem Disorder Extreme conditions FeGa3. FeGa3. Sistemas fortemente correlacionados Strongly correlated systems |
| title_short |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| title_full |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| title_fullStr |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| title_full_unstemmed |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| title_sort |
Emergent quantum phenomena uncovered by extreme conditions and peculiar defects |
| author |
Rabello, Aryella Faé |
| author_facet |
Rabello, Aryella Faé |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Jimenez, Julio Antonio Larrea |
| dc.contributor.author.fl_str_mv |
Rabello, Aryella Faé |
| dc.subject.por.fl_str_mv |
Condições extremas Desordem Disorder Extreme conditions FeGa3. FeGa3. Sistemas fortemente correlacionados Strongly correlated systems |
| topic |
Condições extremas Desordem Disorder Extreme conditions FeGa3. FeGa3. Sistemas fortemente correlacionados Strongly correlated systems |
| description |
This thesis investigates quantum phenomena in correlated materials by studying their physical properties under extreme conditions, including low temperatures (T down to 1.5 K), high pressures (P up to 38 GPa), and magnetic fields (B up to 9 T). The resulting TPB phase diagrams provide a framework to understand the interactions between electronic, spin, and lattice degrees of freedom that determine the low-energy scales governing collective quantum behavior. In addition, this work examines disorder-driven interactions in quantum materials in order to clarify the role of atomic defects in many-body quantum systems. The main focus of this thesis is FeGa3, a narrow-gap intermetallic semiconductor that serves as a model system for studying the influence of atomic defects on correlated electronic states. By systematically comparing pristine FeGa3 with samples containing Fe antisite defects (Fe0.258Ga0.742), this study shows how structural defects modify the electronic and magnetic ground states. High-pressure synchrotron X-ray diffraction, electrical transport, and Mossbauer spectroscopy demonstrate that antisite disorder destabilizes the non-magnetic semiconducting state, leading to the formation of local magnetic moments, in-gap states, and a pressure-induced transition to a magnetically correlated phase. These results indicate that antisite defects play an active role in shaping the electronic and magnetic properties of the system. Beyond FeGa3, the thesis includes complementary investigations of other quantum materials presented in the appendices. In Fe0.05ZrTe2, low-temperature Mössbauer spectroscopy was used to probe a possible charge density wave (CDW) transition, illustrating the applicability of this technique to collective electronic phenomena. In a separate study, SnO was investigated under combined pressure and magnetic field, revealing the emergence of a second superconducting dome in the temperaturepressuremagnetic field phase diagram. This result underscores the relevance of electrical transport measurements performed under simultaneous extreme conditions in the LQMEC-IFUSP laboratory. Overall, this work contributes to the understanding of how pressure, disorder, and external fields influence correlated quantum materials. By clarifying the mechanisms governing the investigated systems, the results presented here provide a basis for exploring and controlling quantum states in materials where defects and external tuning parameters play a central role. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/ |
| url |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012026-162938/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1857669978894893056 |