Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Xavier, Matheus Genaro Dantas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-10102023-101716/
Resumo: The Extragalactic Background Light (EBL) is the second most intense background radiation field in the universe, being the product of the integrated stellar emission and light reprocessed by dust throughout the history of structure formation and cosmic evolution. The precise spectral shape of the EBL is not completely known, as direct measurements are difficult to make due to dominant foregrounds. However, it is possible to probe the EBL indirectly using gamma rays, since, during their propagation over cosmological distances, very high energy (VHE) photons can interact with the EBL producing electron-positron pairs. This dissertation explores the use of Markov Chain Monte Carlo methods to obtain simultaneous constraints on the EBL and intrinsic spectral parameters of gamma-ray sources. Thus, the fundamental goal is to reconstruct the posterior probability density of parameters characterising the EBL and the intrinsic flux emission of active galactic nuclei (AGNs), in a Bayesian approach. The first part of the work is mainly concerned with validating the methodology with a sample of synthetic BL Lacs observed with the instrument configuration of the future Cherenkov Telescope Array (CTA). In this controlled scenario, we investigate the impacts on EBL constraints by progressively including more spectra in the likelihood function. We identify a consistent improvement in uncertainties by combining different sources in the analysis, while also being capable of recovering the spectral indices of all intrinsic spectra. We further explore the impacts of increasing the observation time of the sources and possible systematic effects associated to the choice of EBL modelling. In the second part, we analyse a sample of 65 real spectra from 36 AGN observed by various Imaging Atmospheric Cherenkov Telescopes, obtaining constraints on the EBL and intrinsic parameters that are consistent to other results found in the literature. We identify the Markarian 501 flare data as essential for constraining the far-Infrared part of the EBL, while the combination of all other sources provided robust constraints on the mid-Infrared. Such analysis was possible through the use of the Hamiltonian Monte Carlo method, which is very efficient in a parameter space with a high number of dimensions. Two other extensions are also explored. With the synthetic sample, we discuss the possibility of constraining the Hubble constant while probing the EBL. We also present a Bayesian method for signal estimation in On/Off measurements and perform a preliminary analysis based on H.E.S.S. data. Such method allows improved signal estimation without performing selection cuts on data, which could be useful for improving VHE measurements and detection of faint sources.
id USP_7bc42bca2ecddd64cd0247c554eaddbf
oai_identifier_str oai:teses.usp.br:tde-10102023-101716
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methodsEstudos sobre a luz extragaláctica de fundo com raios gama por meio de métodos de Monte Carlo via cadeias de Markovanálise BayesianaBayesian analysisestimação de sinalExtragalactic Background Lightgamma raysHamiltonian Monte CarloLuz Extragaláctica de FundoMonte Carlo Hamiltonianoraios gamasignal estimationThe Extragalactic Background Light (EBL) is the second most intense background radiation field in the universe, being the product of the integrated stellar emission and light reprocessed by dust throughout the history of structure formation and cosmic evolution. The precise spectral shape of the EBL is not completely known, as direct measurements are difficult to make due to dominant foregrounds. However, it is possible to probe the EBL indirectly using gamma rays, since, during their propagation over cosmological distances, very high energy (VHE) photons can interact with the EBL producing electron-positron pairs. This dissertation explores the use of Markov Chain Monte Carlo methods to obtain simultaneous constraints on the EBL and intrinsic spectral parameters of gamma-ray sources. Thus, the fundamental goal is to reconstruct the posterior probability density of parameters characterising the EBL and the intrinsic flux emission of active galactic nuclei (AGNs), in a Bayesian approach. The first part of the work is mainly concerned with validating the methodology with a sample of synthetic BL Lacs observed with the instrument configuration of the future Cherenkov Telescope Array (CTA). In this controlled scenario, we investigate the impacts on EBL constraints by progressively including more spectra in the likelihood function. We identify a consistent improvement in uncertainties by combining different sources in the analysis, while also being capable of recovering the spectral indices of all intrinsic spectra. We further explore the impacts of increasing the observation time of the sources and possible systematic effects associated to the choice of EBL modelling. In the second part, we analyse a sample of 65 real spectra from 36 AGN observed by various Imaging Atmospheric Cherenkov Telescopes, obtaining constraints on the EBL and intrinsic parameters that are consistent to other results found in the literature. We identify the Markarian 501 flare data as essential for constraining the far-Infrared part of the EBL, while the combination of all other sources provided robust constraints on the mid-Infrared. Such analysis was possible through the use of the Hamiltonian Monte Carlo method, which is very efficient in a parameter space with a high number of dimensions. Two other extensions are also explored. With the synthetic sample, we discuss the possibility of constraining the Hubble constant while probing the EBL. We also present a Bayesian method for signal estimation in On/Off measurements and perform a preliminary analysis based on H.E.S.S. data. Such method allows improved signal estimation without performing selection cuts on data, which could be useful for improving VHE measurements and detection of faint sources.A Luz Extragaláctica de Fundo (EBL) é o segundo campo de radiação de fundo mais intenso no universo, sendo o resultado da emissão estelar e luz reprocessada por poeira integradas ao longo da história de evolução e formação de estruturas. A forma espectral exata da EBL não é completamente conhecida, dado que medidas diretas são difíceis de realizar devido a foregrounds dominantes. No entanto, é possível vincular a EBL indiretamente utilizando raios gama, pois, durante sua propagação por distâncias cosmológicas, fótons de energias muito altas (VHE) podem interagir com a EBL, produzindo pares elétron-pósitron. Esta dissertação explora o uso de métodos de Monte Carlo via Cadeias de Markov (MCMC) para obter simultaneamente vínculos sobre a EBL e parâmetros espectrais intrínsecos de fontes de raios gama. Assim, o objetivo fundamental consiste em reconstruir a distribuição posterior de probabilidade de parâmetros que caracterizam a EBL e o fluxo intrínseco de emissão de núcleos ativos de galáxias (AGNs), em uma abordagem Bayesiana. A primeira parte do trabalho está focada em validar a metodologia com uma amostra de BL Lacs sintéticos observada com a configuração instrumental do futuro Cherenkov Telescope Array (CTA). Neste cenário controlado, nós investigamos os impactos sobre vínculos da EBL através da inclusão progressiva de mais espectros na função de verossimilhança. Identificamos melhorias consistentes nas incertezas ao combinar fontes distintas na análise, concomitantemente recuperando os índices espectrais de todos os espectros intrínsecos. Além disso, exploramos os impactos do aumento do tempo de observação das fontes e possíveis erros sistemáticos associados à escolha de modelagem da EBL. Na segunda parte, analisamos uma amostra de 65 espectros reais de 36 AGNs observados por diversos Telescópios Cherenkov de Imageamento Atmosférico, obtendo vínculos sobre a EBL e parâmetros intrínsecos que são consistentes com outros resultados encontrados na literatura. Nós identificamos os dados de flare de Markarian 501 como essenciais para vincular a região infravermelha distante da EBL, enquanto a combinação de todas as fontes restantes gerou vínculos robustos sobre o infravermelho médio. Esta análise foi possível pelo uso do método de Monte Carlo Hamiltoniano, que é muito eficiente para espaços de parâmetros com um número grande de dimensões. Duas outras extensões também foram exploradas. Com as amostras sintéticas, discutimos a possibilidade de vincular a constante de Hubble junto da EBL. Também apresentamos um método Bayesiano para a estimativa de sinal em medidas On/Off e realizamos uma análise preliminar baseada em dados do H.E.S.S. Este método permite aperfeiçoar a estimativa de sinal sem realizar cortes de seleção nos dados, o que pode ser útil para aprimorar medidas de VHE e a detecção de fontes fracas.Biblioteca Digitais de Teses e Dissertações da USPSantos, Edivaldo MouraXavier, Matheus Genaro Dantas2023-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-10102023-101716/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-11-09T19:00:03Zoai:teses.usp.br:tde-10102023-101716Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-11-09T19:00:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
Estudos sobre a luz extragaláctica de fundo com raios gama por meio de métodos de Monte Carlo via cadeias de Markov
title Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
spellingShingle Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
Xavier, Matheus Genaro Dantas
análise Bayesiana
Bayesian analysis
estimação de sinal
Extragalactic Background Light
gamma rays
Hamiltonian Monte Carlo
Luz Extragaláctica de Fundo
Monte Carlo Hamiltoniano
raios gama
signal estimation
title_short Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
title_full Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
title_fullStr Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
title_full_unstemmed Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
title_sort Extragalactic background light studies with gamma rays via Markov chain Monte Carlo methods
author Xavier, Matheus Genaro Dantas
author_facet Xavier, Matheus Genaro Dantas
author_role author
dc.contributor.none.fl_str_mv Santos, Edivaldo Moura
dc.contributor.author.fl_str_mv Xavier, Matheus Genaro Dantas
dc.subject.por.fl_str_mv análise Bayesiana
Bayesian analysis
estimação de sinal
Extragalactic Background Light
gamma rays
Hamiltonian Monte Carlo
Luz Extragaláctica de Fundo
Monte Carlo Hamiltoniano
raios gama
signal estimation
topic análise Bayesiana
Bayesian analysis
estimação de sinal
Extragalactic Background Light
gamma rays
Hamiltonian Monte Carlo
Luz Extragaláctica de Fundo
Monte Carlo Hamiltoniano
raios gama
signal estimation
description The Extragalactic Background Light (EBL) is the second most intense background radiation field in the universe, being the product of the integrated stellar emission and light reprocessed by dust throughout the history of structure formation and cosmic evolution. The precise spectral shape of the EBL is not completely known, as direct measurements are difficult to make due to dominant foregrounds. However, it is possible to probe the EBL indirectly using gamma rays, since, during their propagation over cosmological distances, very high energy (VHE) photons can interact with the EBL producing electron-positron pairs. This dissertation explores the use of Markov Chain Monte Carlo methods to obtain simultaneous constraints on the EBL and intrinsic spectral parameters of gamma-ray sources. Thus, the fundamental goal is to reconstruct the posterior probability density of parameters characterising the EBL and the intrinsic flux emission of active galactic nuclei (AGNs), in a Bayesian approach. The first part of the work is mainly concerned with validating the methodology with a sample of synthetic BL Lacs observed with the instrument configuration of the future Cherenkov Telescope Array (CTA). In this controlled scenario, we investigate the impacts on EBL constraints by progressively including more spectra in the likelihood function. We identify a consistent improvement in uncertainties by combining different sources in the analysis, while also being capable of recovering the spectral indices of all intrinsic spectra. We further explore the impacts of increasing the observation time of the sources and possible systematic effects associated to the choice of EBL modelling. In the second part, we analyse a sample of 65 real spectra from 36 AGN observed by various Imaging Atmospheric Cherenkov Telescopes, obtaining constraints on the EBL and intrinsic parameters that are consistent to other results found in the literature. We identify the Markarian 501 flare data as essential for constraining the far-Infrared part of the EBL, while the combination of all other sources provided robust constraints on the mid-Infrared. Such analysis was possible through the use of the Hamiltonian Monte Carlo method, which is very efficient in a parameter space with a high number of dimensions. Two other extensions are also explored. With the synthetic sample, we discuss the possibility of constraining the Hubble constant while probing the EBL. We also present a Bayesian method for signal estimation in On/Off measurements and perform a preliminary analysis based on H.E.S.S. data. Such method allows improved signal estimation without performing selection cuts on data, which could be useful for improving VHE measurements and detection of faint sources.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-10102023-101716/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-10102023-101716/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258086586187776