Alternativas de análise para experimentos G × E multiatributo
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052016-111857/ |
Resumo: | Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo. |
| id |
USP_7de8e69f663e893a25cf425fd158ecb8 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04052016-111857 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Alternativas de análise para experimentos G × E multiatributoAlternatives of analysis of G×E trials multi-attributeAMMI modelsAnálise de procrustes generalizadoAtributosAttributesDados de tripla entradaDados faltantesGeneralised procrustes analysisGenotypes × environments interactionImputação múltiplaInteração genótipos x ambientesMissing valuesModelos AMMIMultiple imputationThree-way dataGeralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.Usually, in the experiments genotype by environment (G×E) it is common to observe the behaviour of genotypes in relation to different attributes in the environments considered. The analysis of such experiments have been widely discussed for the case of a single attribute. This thesis presents some alternatives of analysis, considering genotypes, environments and attributes simultaneously. The first, is based on the mixture maximum likelihood method - Mixclus and the three-mode principal component analysis, these two methods have been very used in the psychology and chemistry, but little in agriculture. The second, is a methodology that combines the additive main effects and multiplicative interaction models - AMMI, efficient model for the analysis of experiments (G×E) with one attribute, and the generalised procrustes analysis, which allows compare configurations of points and provide a numerical measure of how much they differ. Finally, an alternative to perform data imputation in the experiments (G×E) is presented, because, a very frequent situation in these experiments, is the presence of missing values. It is concluded that the proposed methodologies are useful tools for the analysis of experiments (G×E) multi-attribute.Biblioteca Digitais de Teses e Dissertações da USPDias, Carlos Tadeu dos SantosPeña, Marisol Garcia2016-02-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052016-111857/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:18Zoai:teses.usp.br:tde-04052016-111857Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Alternativas de análise para experimentos G × E multiatributo Alternatives of analysis of G×E trials multi-attribute |
| title |
Alternativas de análise para experimentos G × E multiatributo |
| spellingShingle |
Alternativas de análise para experimentos G × E multiatributo Peña, Marisol Garcia AMMI models Análise de procrustes generalizado Atributos Attributes Dados de tripla entrada Dados faltantes Generalised procrustes analysis Genotypes × environments interaction Imputação múltipla Interação genótipos x ambientes Missing values Modelos AMMI Multiple imputation Three-way data |
| title_short |
Alternativas de análise para experimentos G × E multiatributo |
| title_full |
Alternativas de análise para experimentos G × E multiatributo |
| title_fullStr |
Alternativas de análise para experimentos G × E multiatributo |
| title_full_unstemmed |
Alternativas de análise para experimentos G × E multiatributo |
| title_sort |
Alternativas de análise para experimentos G × E multiatributo |
| author |
Peña, Marisol Garcia |
| author_facet |
Peña, Marisol Garcia |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dias, Carlos Tadeu dos Santos |
| dc.contributor.author.fl_str_mv |
Peña, Marisol Garcia |
| dc.subject.por.fl_str_mv |
AMMI models Análise de procrustes generalizado Atributos Attributes Dados de tripla entrada Dados faltantes Generalised procrustes analysis Genotypes × environments interaction Imputação múltipla Interação genótipos x ambientes Missing values Modelos AMMI Multiple imputation Three-way data |
| topic |
AMMI models Análise de procrustes generalizado Atributos Attributes Dados de tripla entrada Dados faltantes Generalised procrustes analysis Genotypes × environments interaction Imputação múltipla Interação genótipos x ambientes Missing values Modelos AMMI Multiple imputation Three-way data |
| description |
Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-02-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052016-111857/ |
| url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-04052016-111857/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257850550681600 |