Mobile terrestrial laser scanner for site-specific management in orange crop

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Colaço, André Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/
Resumo: Sensors based on LiDAR (Light Detection and Ranging) technology have the potential to provide accurate 3D models of the trees retrieving information such as canopy volume and height. This information can be used for diagnostics and prescriptions of fertilizers and plant protection products on a site-specific basis. This research aimed to investigate the use of LiDAR sensors in orange crops. Orange is one of the most important tree crop in Brazil. So far, research have developed and tested LiDAR based systems for several tree crops. However, usually individual trees or small field plots have been used. Therefore, several aspects related to data acquisition and processing must still be developed for large-scale application. The first study reported in this document (Chapter 3) aimed to develop and test a mobile terrestrial laser scanner (MTLS) and new data processing methods in order to obtain 3D models of large commercial orange groves and spatial information about canopy geometry. A 2D laser sensor and a RTK-GNSS receiver (Real Time Kinematics - Global Navigation Satellite System) were mounted on a vehicle. The data processing was based on generating a georeferenced point cloud, followed by the filtering, classification and surface reconstruction steps. A 25 ha commercial orange grove was used for field validation. The developed data acquisition and processing system was able to produce a reliable point cloud of the grove, providing high resolution canopy volume and height information. The choice of the type of point cloud classification (by individual trees or by transversal sections of the row) and the surface reconstruction algorithm is discussed in this study. The second study (Chapter 4) aimed to characterize the spatial variability of canopy geometry in commercial orange groves. Understanding such variability allows sensor-based variable rate application of inputs (i.e, applying proportional rates of inputs based on the variability of canopy size) to be considered as a suitable strategy to optimize the use of fertilizers and plant protection products. Five commercial orange groves were scanned with the developed MTLS system. According to the variability of canopy volume found in those groves, the input savings as a result of implementing sensor-based variable rate technologies were estimated in about 40%. The second goal of this study was to understand the relationship between canopy geometry and several other relevant attributes of the groves. The canopy volume and height maps of three groves were analyzed against historical yield maps, elevation, soil electrical conductivity, organic matter and clay content maps. The correlations found between canopy geometry and yield or soil maps varied from poor to strong correlations, depending on the grove. When classifying the groves into three classes according to canopy size, the yield performance and soil features inside each class was found to be significantly different, indicating that canopy geometry is a suitable variable to guide management zones delineation in one grove. Overall results from this research show the potential of MTLS systems and subsequent data analysis in orange crops indicating how canopy geometry information can be used in site-specific management practices.
id USP_7f9ee8bacc196f7cf8eb85bdb0b42f02
oai_identifier_str oai:teses.usp.br:tde-23012017-151317
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Mobile terrestrial laser scanner for site-specific management in orange cropSensor a laser na gestão localizada de pomares de laranjaAgricultura de precisãoCanopy geometryGeometria de copaLiDAR sensorPrecision agricultureSensor LiDARTecnologia de taxa variadaVariable-rate technologySensors based on LiDAR (Light Detection and Ranging) technology have the potential to provide accurate 3D models of the trees retrieving information such as canopy volume and height. This information can be used for diagnostics and prescriptions of fertilizers and plant protection products on a site-specific basis. This research aimed to investigate the use of LiDAR sensors in orange crops. Orange is one of the most important tree crop in Brazil. So far, research have developed and tested LiDAR based systems for several tree crops. However, usually individual trees or small field plots have been used. Therefore, several aspects related to data acquisition and processing must still be developed for large-scale application. The first study reported in this document (Chapter 3) aimed to develop and test a mobile terrestrial laser scanner (MTLS) and new data processing methods in order to obtain 3D models of large commercial orange groves and spatial information about canopy geometry. A 2D laser sensor and a RTK-GNSS receiver (Real Time Kinematics - Global Navigation Satellite System) were mounted on a vehicle. The data processing was based on generating a georeferenced point cloud, followed by the filtering, classification and surface reconstruction steps. A 25 ha commercial orange grove was used for field validation. The developed data acquisition and processing system was able to produce a reliable point cloud of the grove, providing high resolution canopy volume and height information. The choice of the type of point cloud classification (by individual trees or by transversal sections of the row) and the surface reconstruction algorithm is discussed in this study. The second study (Chapter 4) aimed to characterize the spatial variability of canopy geometry in commercial orange groves. Understanding such variability allows sensor-based variable rate application of inputs (i.e, applying proportional rates of inputs based on the variability of canopy size) to be considered as a suitable strategy to optimize the use of fertilizers and plant protection products. Five commercial orange groves were scanned with the developed MTLS system. According to the variability of canopy volume found in those groves, the input savings as a result of implementing sensor-based variable rate technologies were estimated in about 40%. The second goal of this study was to understand the relationship between canopy geometry and several other relevant attributes of the groves. The canopy volume and height maps of three groves were analyzed against historical yield maps, elevation, soil electrical conductivity, organic matter and clay content maps. The correlations found between canopy geometry and yield or soil maps varied from poor to strong correlations, depending on the grove. When classifying the groves into three classes according to canopy size, the yield performance and soil features inside each class was found to be significantly different, indicating that canopy geometry is a suitable variable to guide management zones delineation in one grove. Overall results from this research show the potential of MTLS systems and subsequent data analysis in orange crops indicating how canopy geometry information can be used in site-specific management practices.Sensores baseados em tecnologia LiDAR (Light Detection and Ranging) têm o potencial de fornecer modelos tridimensionais de árvores, provendo informações como o volume e altura de copa. Essas informações podem ser utilizadas em diagnósticos e recomendações localizadas de fertilizantes e defensivos agrícolas. Este estudo teve como objetivo investigar o uso de sensores LiDAR na cultura da laranja, uma das principais culturas de porte arbóreo no Brasil. Diversas pesquisas têm desenvolvido sistemas LiDAR para culturas arbóreas. Porém, normalmente tais sistemas são empregados em plantas individuais ou em pequenas áreas. Dessa forma, diversos aspectos da aquisição e processamento de dados ainda devem ser desenvolvidos para viabilizar a aplicação em larga escala. O primeiro estudo deste documento (Capítulo 3) focou no desenvolvimento de um sistema LiDAR (Mobile Terrestrial Laser Scanner - MTLS) e nova metodologia de processamento de dados para obtenção de informações acerca da geometria das copas em pomares comerciais de laranja. Um sensor a laser e um receptor RTK-GNSS (Real Time Kinematics - Global Navigation Satellite System) foram instalados em um veículo para leituras em campo. O processamento de dados foi baseado na geração de uma nuvem de pontos, seguida dos passos de filtragem, classificação e reconstrução da superfície das copas. Um pomar comercial de laranja de 25 ha foi utilizado para a validação. O sistema de aquisição e processamento de dados foi capaz de produzir uma nuvem de pontos representativa do pomar, fornecendo informação sobre geometria das plantas em alta resolução. A escolha sobre o tipo de classificação da nuvem de pontos (em plantas individuais ou em seções transversais das fileiras) e sobre o algoritmo de reconstrução de superfície, foi discutida nesse estudo. O segundo estudo (Capítulo 4) buscou caracterizar a variabilidade espacial da geometria de copa em pomares comerciais. Entender tal variabilidade permite avaliar se a aplicação em taxas variáveis de insumos baseada em sensores LiDAR (aplicar quantias de insumos proporcionais ao tamanho das copas) é uma estratégia adequada para otimizar o uso de insumos. Cinco pomares comerciais foram avaliados com o sistema MTLS. De acordo com a variabilidade encontrada, a economia de insumos pelo uso da taxa variável foi estimada em aproximadamente 40%. O segundo objetivo desse estudo foi avaliar a relação entre a geometria de copa e diversos outros parâmetros dos pomares. Os mapas de volume e altura de copa foram comparados aos mapas de produtividade, elevação, condutividade elétrica do solo, matéria orgânica e textura do solo. As correlações entre geometria de copa e produtividade ou fatores de solo variaram de fraca até forte, dependendo do pomar. Quando os pomares foram divididos entre três classes com diferentes tamanhos de copas, o desempenho em produtividade e as características do solo foram distintas entre as três zonas, indicando que parâmetros de geometria de copa são variáveis úteis para a delimitação de unidades de gestão diferenciada em um pomar. Os resultados gerais desta pesquisa mostraram o potencial de sistemas MTLS para pomares de laranja, indicando como a geometria de copa pode ser utilizada na gestão localizada de pomares de laranja.Biblioteca Digitais de Teses e Dissertações da USPAlexandre Escolà AgustíMolin, Jose PauloColaço, André Freitas2016-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:34:08Zoai:teses.usp.br:tde-23012017-151317Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mobile terrestrial laser scanner for site-specific management in orange crop
Sensor a laser na gestão localizada de pomares de laranja
title Mobile terrestrial laser scanner for site-specific management in orange crop
spellingShingle Mobile terrestrial laser scanner for site-specific management in orange crop
Colaço, André Freitas
Agricultura de precisão
Canopy geometry
Geometria de copa
LiDAR sensor
Precision agriculture
Sensor LiDAR
Tecnologia de taxa variada
Variable-rate technology
title_short Mobile terrestrial laser scanner for site-specific management in orange crop
title_full Mobile terrestrial laser scanner for site-specific management in orange crop
title_fullStr Mobile terrestrial laser scanner for site-specific management in orange crop
title_full_unstemmed Mobile terrestrial laser scanner for site-specific management in orange crop
title_sort Mobile terrestrial laser scanner for site-specific management in orange crop
author Colaço, André Freitas
author_facet Colaço, André Freitas
author_role author
dc.contributor.none.fl_str_mv Alexandre Escolà Agustí
Molin, Jose Paulo
dc.contributor.author.fl_str_mv Colaço, André Freitas
dc.subject.por.fl_str_mv Agricultura de precisão
Canopy geometry
Geometria de copa
LiDAR sensor
Precision agriculture
Sensor LiDAR
Tecnologia de taxa variada
Variable-rate technology
topic Agricultura de precisão
Canopy geometry
Geometria de copa
LiDAR sensor
Precision agriculture
Sensor LiDAR
Tecnologia de taxa variada
Variable-rate technology
description Sensors based on LiDAR (Light Detection and Ranging) technology have the potential to provide accurate 3D models of the trees retrieving information such as canopy volume and height. This information can be used for diagnostics and prescriptions of fertilizers and plant protection products on a site-specific basis. This research aimed to investigate the use of LiDAR sensors in orange crops. Orange is one of the most important tree crop in Brazil. So far, research have developed and tested LiDAR based systems for several tree crops. However, usually individual trees or small field plots have been used. Therefore, several aspects related to data acquisition and processing must still be developed for large-scale application. The first study reported in this document (Chapter 3) aimed to develop and test a mobile terrestrial laser scanner (MTLS) and new data processing methods in order to obtain 3D models of large commercial orange groves and spatial information about canopy geometry. A 2D laser sensor and a RTK-GNSS receiver (Real Time Kinematics - Global Navigation Satellite System) were mounted on a vehicle. The data processing was based on generating a georeferenced point cloud, followed by the filtering, classification and surface reconstruction steps. A 25 ha commercial orange grove was used for field validation. The developed data acquisition and processing system was able to produce a reliable point cloud of the grove, providing high resolution canopy volume and height information. The choice of the type of point cloud classification (by individual trees or by transversal sections of the row) and the surface reconstruction algorithm is discussed in this study. The second study (Chapter 4) aimed to characterize the spatial variability of canopy geometry in commercial orange groves. Understanding such variability allows sensor-based variable rate application of inputs (i.e, applying proportional rates of inputs based on the variability of canopy size) to be considered as a suitable strategy to optimize the use of fertilizers and plant protection products. Five commercial orange groves were scanned with the developed MTLS system. According to the variability of canopy volume found in those groves, the input savings as a result of implementing sensor-based variable rate technologies were estimated in about 40%. The second goal of this study was to understand the relationship between canopy geometry and several other relevant attributes of the groves. The canopy volume and height maps of three groves were analyzed against historical yield maps, elevation, soil electrical conductivity, organic matter and clay content maps. The correlations found between canopy geometry and yield or soil maps varied from poor to strong correlations, depending on the grove. When classifying the groves into three classes according to canopy size, the yield performance and soil features inside each class was found to be significantly different, indicating that canopy geometry is a suitable variable to guide management zones delineation in one grove. Overall results from this research show the potential of MTLS systems and subsequent data analysis in orange crops indicating how canopy geometry information can be used in site-specific management practices.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/
url http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258405363777536