Classificação de eventos de PIO utilizando Redes Neurais Artificiais
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18161/tde-19042023-171301/ |
Resumo: | Durante a certificação e ensaios em voo de um novo modelo de aeronave, o processo de comprovação da baixa susceptibilidade à oscilação caracterizada como PIO é comumente feita com base na experiencia dos pilotos de prova envolvidos no projeto, desta forma, o resultado de comprovação da segurança da operação com relação ao PIO está intrínseca a subjetividade da análise, ou seja, o processo de certificação pelo qual novos projetos de aeronaves são submetidos está diretamente relacionado à experiencia da tripulação na qual realiza os ensaios de PIO daquele modelo. Novas aeronaves tendem a reduções de margens de estabilidade inerentes ao projeto, ou seja, maiores tendências ao PIO, e veículos autônomos com capacidade de voo completo sem tripulação, o que colabora para necessidade da redução da subjetividade na classificação do PIO para projetos futuros. Este trabalho trata do desenvolvimento de uma rede neural artificial capaz de classificar a oscilação de PIO de acordo com a escala de PIOR, e faz a análise da subjetividade na classificação do PIO. A assertividade do resultado obtido com a classificação via rede neural artificial foi superior ao obtido pela classificação dada pelos pilotos, quando a escolha das entradas segue as diretrizes estabelecidas nesta dissertação. |
| id |
USP_801012f395eb8a5cc69dae96661e2023 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-19042023-171301 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Classificação de eventos de PIO utilizando Redes Neurais ArtificiaisPIO classification using Artificial Neural NetworksEnsaios em VooEscala PIORFatores HumanosFlight TestHuman FactorsNeural NetworkPIOPIOPIOR ScaleRede Neural ArtificialSynthetic TaskTarefa SintéticaDurante a certificação e ensaios em voo de um novo modelo de aeronave, o processo de comprovação da baixa susceptibilidade à oscilação caracterizada como PIO é comumente feita com base na experiencia dos pilotos de prova envolvidos no projeto, desta forma, o resultado de comprovação da segurança da operação com relação ao PIO está intrínseca a subjetividade da análise, ou seja, o processo de certificação pelo qual novos projetos de aeronaves são submetidos está diretamente relacionado à experiencia da tripulação na qual realiza os ensaios de PIO daquele modelo. Novas aeronaves tendem a reduções de margens de estabilidade inerentes ao projeto, ou seja, maiores tendências ao PIO, e veículos autônomos com capacidade de voo completo sem tripulação, o que colabora para necessidade da redução da subjetividade na classificação do PIO para projetos futuros. Este trabalho trata do desenvolvimento de uma rede neural artificial capaz de classificar a oscilação de PIO de acordo com a escala de PIOR, e faz a análise da subjetividade na classificação do PIO. A assertividade do resultado obtido com a classificação via rede neural artificial foi superior ao obtido pela classificação dada pelos pilotos, quando a escolha das entradas segue as diretrizes estabelecidas nesta dissertação.During the certification and the flight tests of a new airplane, the verification process to prove the low susceptibility at PIO is usually done for the experience of the test pilots, thus, the result and safety operation regarding PIO is intrinsic the assessment subjectivity, in other words, the certification process of PIO is directly related with the test pilots experiences. New airplanes tend to reduce stability margins, that is, increasing PIO tendencies, and full autonomous airplanes with capacity to perform a complete flight without crew, for this reason it is necessary the reduction of the subjectivity of PIO assessment for next generation of aircraft. This project covers the development of a neural network that will be able to classify the PIO oscillations in accordance with the PIOR Scale and to the subjective assessment of PIO classification. Neural networks assertiveness was higher for PIO classification than the result done by pilots, when the choice of inputs follow the guidelines established for this work.Biblioteca Digitais de Teses e Dissertações da USPBidinotto, Jorge HenriqueBruschi, Adriano Ghigiarelli2023-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18161/tde-19042023-171301/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-04-20T18:26:12Zoai:teses.usp.br:tde-19042023-171301Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-20T18:26:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais PIO classification using Artificial Neural Networks |
| title |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| spellingShingle |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais Bruschi, Adriano Ghigiarelli Ensaios em Voo Escala PIOR Fatores Humanos Flight Test Human Factors Neural Network PIO PIO PIOR Scale Rede Neural Artificial Synthetic Task Tarefa Sintética |
| title_short |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| title_full |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| title_fullStr |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| title_full_unstemmed |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| title_sort |
Classificação de eventos de PIO utilizando Redes Neurais Artificiais |
| author |
Bruschi, Adriano Ghigiarelli |
| author_facet |
Bruschi, Adriano Ghigiarelli |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bidinotto, Jorge Henrique |
| dc.contributor.author.fl_str_mv |
Bruschi, Adriano Ghigiarelli |
| dc.subject.por.fl_str_mv |
Ensaios em Voo Escala PIOR Fatores Humanos Flight Test Human Factors Neural Network PIO PIO PIOR Scale Rede Neural Artificial Synthetic Task Tarefa Sintética |
| topic |
Ensaios em Voo Escala PIOR Fatores Humanos Flight Test Human Factors Neural Network PIO PIO PIOR Scale Rede Neural Artificial Synthetic Task Tarefa Sintética |
| description |
Durante a certificação e ensaios em voo de um novo modelo de aeronave, o processo de comprovação da baixa susceptibilidade à oscilação caracterizada como PIO é comumente feita com base na experiencia dos pilotos de prova envolvidos no projeto, desta forma, o resultado de comprovação da segurança da operação com relação ao PIO está intrínseca a subjetividade da análise, ou seja, o processo de certificação pelo qual novos projetos de aeronaves são submetidos está diretamente relacionado à experiencia da tripulação na qual realiza os ensaios de PIO daquele modelo. Novas aeronaves tendem a reduções de margens de estabilidade inerentes ao projeto, ou seja, maiores tendências ao PIO, e veículos autônomos com capacidade de voo completo sem tripulação, o que colabora para necessidade da redução da subjetividade na classificação do PIO para projetos futuros. Este trabalho trata do desenvolvimento de uma rede neural artificial capaz de classificar a oscilação de PIO de acordo com a escala de PIOR, e faz a análise da subjetividade na classificação do PIO. A assertividade do resultado obtido com a classificação via rede neural artificial foi superior ao obtido pela classificação dada pelos pilotos, quando a escolha das entradas segue as diretrizes estabelecidas nesta dissertação. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-03-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18161/tde-19042023-171301/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18161/tde-19042023-171301/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258296813092864 |