Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Rodrigues, Fabrício Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-07052012-121050/
Resumo: A modelagem de distribuição de espécies tem como objetivo induzir um modelo para predizer a distribuição potencial de uma dada espécie. O modelo é projetado em um mapa de distribuição potencial que representa a probabilidade da presença da espécie em cada ponto. Esse processo de indução está relacionado com a estimativa do nicho fundamental da espécie, através da busca por relações entre dados georreferenciados de ocorrência da espécie e variáveis ambientais. Vários algoritmos de modelagem podem ser utilizados nessa tarefa. Oferecer diversos algoritmos pode tornar as ferramentas de modelagem mais completas. Porém, surge uma questão importante: qual algoritmo de modelagem escolher? Essa questão está relacionada com o desempenho preditivo das técnicas implementadas pelos algoritmos. Nesse contexto, o objetivo principal do trabalho foi organizar e especificar um método de análise de desempenho preditivo dos algoritmos de modelagem de distribuição de espécies. Através do método proposto é possível ter uma visão completa, estruturada e sistemática das etapas previstas em projetos de análise de desempenho preditivo dos algoritmos. O método pode ser utilizado como referência em estudos de validação de novos algoritmos, de comparação entre técnicas e na seleção de um ou mais algoritmos de modelagem. Como estudo de caso, o método proposto foi adotado nos testes de validação de um algoritmo baseado em Redes Neurais, desenvolvido e integrado ao framework openModeller, através da comparação com outros algoritmos já utilizados na modelagem. Além da própria validação, os testes tiveram como objetivo demonstrar a aplicabilidade do método. Os resultados mostraram que o algoritmo de Redes Neurais apresentou desempenho semelhante ao desempenho dos demais algoritmos, tendo sido, portanto, validado como adequado à tarefa de modelagem. Ainda no contexto da pesquisa, um algoritmo baseado na técnica de amostragem denominada Jackknife foi integrado ao openModeller, para aplicação na etapa de pré-análise. Testes relacionados com o tempo de execução foram realizados e uma versão paralela desse algoritmo foi desenvolvida.
id USP_80263839cd1e9a2dd4f60f8684fd4b66
oai_identifier_str oai:teses.usp.br:tde-07052012-121050
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.A reference method for predictive performance analysis of species distribution modeling algorithms.Análise de desempenhoAprendizagem de máquinaMachine learningModelagem de distribuição de espéciesNeural networksPerformance analysisRedes neuraisSpecies distribution modelingA modelagem de distribuição de espécies tem como objetivo induzir um modelo para predizer a distribuição potencial de uma dada espécie. O modelo é projetado em um mapa de distribuição potencial que representa a probabilidade da presença da espécie em cada ponto. Esse processo de indução está relacionado com a estimativa do nicho fundamental da espécie, através da busca por relações entre dados georreferenciados de ocorrência da espécie e variáveis ambientais. Vários algoritmos de modelagem podem ser utilizados nessa tarefa. Oferecer diversos algoritmos pode tornar as ferramentas de modelagem mais completas. Porém, surge uma questão importante: qual algoritmo de modelagem escolher? Essa questão está relacionada com o desempenho preditivo das técnicas implementadas pelos algoritmos. Nesse contexto, o objetivo principal do trabalho foi organizar e especificar um método de análise de desempenho preditivo dos algoritmos de modelagem de distribuição de espécies. Através do método proposto é possível ter uma visão completa, estruturada e sistemática das etapas previstas em projetos de análise de desempenho preditivo dos algoritmos. O método pode ser utilizado como referência em estudos de validação de novos algoritmos, de comparação entre técnicas e na seleção de um ou mais algoritmos de modelagem. Como estudo de caso, o método proposto foi adotado nos testes de validação de um algoritmo baseado em Redes Neurais, desenvolvido e integrado ao framework openModeller, através da comparação com outros algoritmos já utilizados na modelagem. Além da própria validação, os testes tiveram como objetivo demonstrar a aplicabilidade do método. Os resultados mostraram que o algoritmo de Redes Neurais apresentou desempenho semelhante ao desempenho dos demais algoritmos, tendo sido, portanto, validado como adequado à tarefa de modelagem. Ainda no contexto da pesquisa, um algoritmo baseado na técnica de amostragem denominada Jackknife foi integrado ao openModeller, para aplicação na etapa de pré-análise. Testes relacionados com o tempo de execução foram realizados e uma versão paralela desse algoritmo foi desenvolvida.The species distribution modeling aim is to induce a model to predict the potential distribution of a given species. The model is projected onto a potential distribution map that represents the presence probability of the species at each point. This induction process is related to the fundamental niche estimation of the species, through the search for relationships between georeferenced data of species occurrence and environmental variables. Several modeling algorithms can be used for this task. Providing different algorithms can make the modeling tools more complete. However, an important question arises: what modeling algorithm to choose? This issue is related to the predictive performance of the techniques implemented by the algorithms. In this context, the aim of this research was to organize and to specify a predictive performance analysis method of the species distribution modeling algorithms. Through the proposed method, it is possible to have a complete and structured vision of the steps in the planning of predictive performance analysis of the algorithms. The method may be used as a reference in validation studies of new algorithms, in comparison among techniques and in choosing one or more modeling algorithms. As a case study, the proposed method was adopted in the validation tests of an algorithm based on Neural Networks, developed and integrated into the openModeller framework, which was compared with other algorithms already used in modeling. Besides the validation itself, the tests intended to demonstrate the applicability of the method. The results showed that the Neural Networks algorithm presented similar performance to those of other algorithms and was validated as adequate to the modeling task. Still in the research context, an algorithm based on a sampling technique called the Jackknife was integrated to the openModeller, to be applied in the pre-analysis step. Tests related to the running time were carried out and a parallel version of this algorithm was developed.Biblioteca Digitais de Teses e Dissertações da USPCorrêa, Pedro Luiz PizzigattiRodrigues, Fabrício Augusto2012-02-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-07052012-121050/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:31Zoai:teses.usp.br:tde-07052012-121050Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
A reference method for predictive performance analysis of species distribution modeling algorithms.
title Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
spellingShingle Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
Rodrigues, Fabrício Augusto
Análise de desempenho
Aprendizagem de máquina
Machine learning
Modelagem de distribuição de espécies
Neural networks
Performance analysis
Redes neurais
Species distribution modeling
title_short Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
title_full Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
title_fullStr Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
title_full_unstemmed Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
title_sort Um método de referência para análise de desempenho preditivo de algoritmos de modelagem de distribuição de espécies.
author Rodrigues, Fabrício Augusto
author_facet Rodrigues, Fabrício Augusto
author_role author
dc.contributor.none.fl_str_mv Corrêa, Pedro Luiz Pizzigatti
dc.contributor.author.fl_str_mv Rodrigues, Fabrício Augusto
dc.subject.por.fl_str_mv Análise de desempenho
Aprendizagem de máquina
Machine learning
Modelagem de distribuição de espécies
Neural networks
Performance analysis
Redes neurais
Species distribution modeling
topic Análise de desempenho
Aprendizagem de máquina
Machine learning
Modelagem de distribuição de espécies
Neural networks
Performance analysis
Redes neurais
Species distribution modeling
description A modelagem de distribuição de espécies tem como objetivo induzir um modelo para predizer a distribuição potencial de uma dada espécie. O modelo é projetado em um mapa de distribuição potencial que representa a probabilidade da presença da espécie em cada ponto. Esse processo de indução está relacionado com a estimativa do nicho fundamental da espécie, através da busca por relações entre dados georreferenciados de ocorrência da espécie e variáveis ambientais. Vários algoritmos de modelagem podem ser utilizados nessa tarefa. Oferecer diversos algoritmos pode tornar as ferramentas de modelagem mais completas. Porém, surge uma questão importante: qual algoritmo de modelagem escolher? Essa questão está relacionada com o desempenho preditivo das técnicas implementadas pelos algoritmos. Nesse contexto, o objetivo principal do trabalho foi organizar e especificar um método de análise de desempenho preditivo dos algoritmos de modelagem de distribuição de espécies. Através do método proposto é possível ter uma visão completa, estruturada e sistemática das etapas previstas em projetos de análise de desempenho preditivo dos algoritmos. O método pode ser utilizado como referência em estudos de validação de novos algoritmos, de comparação entre técnicas e na seleção de um ou mais algoritmos de modelagem. Como estudo de caso, o método proposto foi adotado nos testes de validação de um algoritmo baseado em Redes Neurais, desenvolvido e integrado ao framework openModeller, através da comparação com outros algoritmos já utilizados na modelagem. Além da própria validação, os testes tiveram como objetivo demonstrar a aplicabilidade do método. Os resultados mostraram que o algoritmo de Redes Neurais apresentou desempenho semelhante ao desempenho dos demais algoritmos, tendo sido, portanto, validado como adequado à tarefa de modelagem. Ainda no contexto da pesquisa, um algoritmo baseado na técnica de amostragem denominada Jackknife foi integrado ao openModeller, para aplicação na etapa de pré-análise. Testes relacionados com o tempo de execução foram realizados e uma versão paralela desse algoritmo foi desenvolvida.
publishDate 2012
dc.date.none.fl_str_mv 2012-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-07052012-121050/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-07052012-121050/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257957507530752