Artificial intelligence in the hiring process: uses and consequences

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Silva, Humberta Karinne da Conceição Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/12/12139/tde-03102025-113052/
Resumo: In the neoliberal context, Artificial Intelligence (AI) is employed across all spheres of human activity, from the most prosaic tasks to the most complex. In both the global and Brazilian contexts, organizations have increasingly adopted 4.0 technologies as part of broader automation strategies, integrating them into various practices, including hiring, in Human Resource Management (HRM). The aim has been to make these processes more agile, objective, and efficient. However, algorithms are developed and used by people, and as such, they inherently carry conscious and/or unconscious biases embedded in their training data, design, and user outputs; therefore, these systems are not neutral. These biases manifest through the choice of input parameters, thresholds, and constraints, which consequently influence how algorithms operate and the decisions they generate. When applying technology to rank candidates, Talent Acquisition (TA) professionals are subject to hidden criteria that may be discretionary and, depending on the social and organizational context, even discriminatory. Moreover, this impact becomes especially significant when users cannot explain the system\'s outputs. Therefore, this research aims to address the following question: To what extent does the continuous use of artificial intelligence in the hiring process lead to undesirable consequences and changes for stakeholders? To address this question, the dissertation was divided into three articles, each aimed at exploring the phenomenon from complementary angles: (1) A systematic literature review on the consequences of AI use in hiring; (2) A qualitative study analyzing how AI is transforming the hiring processes of German headquarters and their Brazilian subsidiaries; (3) A qualitative investigation of stakeholder experiences within the hiring process, focusing on identify the consequences of AI adoption. The three publications reveal that the consequences of using AI in hiring encompass a complex interplay of benefits and drawbacks that significantly affect users, candidate experiences, the talent acquisition profession, organizations, and society. The findings reveal a hiring process that is fragmented, with different kinds of systems processing large amounts of applicant data to provide unique results, which the TA professional must oversee and monitor to create shortlists of the most \"suitable\" individuals. By customizing recommendations based on past decision- making patterns, these systems appear efficient while influencing organizational structure and behavior. Although these technologies deliver the expected results, such as reduced hiring time, they are not without controversy, and the undesirable consequences outweigh the desirable ones.
id USP_8376ccec095354df017e77db6c3e0018
oai_identifier_str oai:teses.usp.br:tde-03102025-113052
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Artificial intelligence in the hiring process: uses and consequencesA inteligência artificial no processo de seleção de pessoas: usos e consequênciasConsequences of AI usageConsequências do uso da IAGestão de pessoasHiringHuman resource managementPersonnel selectionSeleção de pessoasUsage of artificial intelligenceUso de inteligência artificialIn the neoliberal context, Artificial Intelligence (AI) is employed across all spheres of human activity, from the most prosaic tasks to the most complex. In both the global and Brazilian contexts, organizations have increasingly adopted 4.0 technologies as part of broader automation strategies, integrating them into various practices, including hiring, in Human Resource Management (HRM). The aim has been to make these processes more agile, objective, and efficient. However, algorithms are developed and used by people, and as such, they inherently carry conscious and/or unconscious biases embedded in their training data, design, and user outputs; therefore, these systems are not neutral. These biases manifest through the choice of input parameters, thresholds, and constraints, which consequently influence how algorithms operate and the decisions they generate. When applying technology to rank candidates, Talent Acquisition (TA) professionals are subject to hidden criteria that may be discretionary and, depending on the social and organizational context, even discriminatory. Moreover, this impact becomes especially significant when users cannot explain the system\'s outputs. Therefore, this research aims to address the following question: To what extent does the continuous use of artificial intelligence in the hiring process lead to undesirable consequences and changes for stakeholders? To address this question, the dissertation was divided into three articles, each aimed at exploring the phenomenon from complementary angles: (1) A systematic literature review on the consequences of AI use in hiring; (2) A qualitative study analyzing how AI is transforming the hiring processes of German headquarters and their Brazilian subsidiaries; (3) A qualitative investigation of stakeholder experiences within the hiring process, focusing on identify the consequences of AI adoption. The three publications reveal that the consequences of using AI in hiring encompass a complex interplay of benefits and drawbacks that significantly affect users, candidate experiences, the talent acquisition profession, organizations, and society. The findings reveal a hiring process that is fragmented, with different kinds of systems processing large amounts of applicant data to provide unique results, which the TA professional must oversee and monitor to create shortlists of the most \"suitable\" individuals. By customizing recommendations based on past decision- making patterns, these systems appear efficient while influencing organizational structure and behavior. Although these technologies deliver the expected results, such as reduced hiring time, they are not without controversy, and the undesirable consequences outweigh the desirable ones.No contexto neoliberal, a inteligência artificial (IA) está sendo aplicada indiscriminadamente em todos os âmbitos da vida, inclusive nas organizações, muitas vezes sem qualquer supervisão ou controle estatal. No mundo e no Brasil, as organizações têm empregado essa tecnologia no processo de tomada de decisão em diferentes atividades, incluindo o processo de seleção de pessoas, com o objetivo de tornar o procedimento mais ágil, objetivo e eficiente. No entanto, se os algoritmos, ao serem desenvolvidos e utilizados por pessoas, são alimentados por vieses (conscientes e/ou inconscientes) advindos dos dados de treinamento, do design e dos outputs do uso, então esses sistemas não são neutros. Esse impacto se torna especialmente relevante quando os usuários não sabem explicar os outputs provenientes do sistema. Um exemplo claro disso é a aplicação de tecnologias para ranquear candidatos e, com base nesse ranqueamento, decidir quem avança para as etapas seguintes ou quem será excluído do processo. Diante disso, esta pesquisa busca responder à seguinte pergunta: em que medida o uso contínuo de inteligência artificial no processo de seleção gera consequências e mudanças indesejáveis para os stakeholders? Para atender ao objetivo da tese, este estudo foi dividido em três etapas, cada uma resultando em um artigo científico específico com a missão de descrever e explicar teoricamente o fenômeno: 1. Uma revisão sistemática da literatura sobre as consequências do uso da IA na seleção de pessoas; 2. Uma pesquisa qualitativa que analisa como a inteligência artificial está alterando o processo de seleção de empresas da Alemanha e de suas subsidiárias brasileiras; 3. Uma pesquisa qualitativa que analisa a experiência dos stakeholders envolvidos no processo de seleção, com foco na identificação das consequências do uso da IA nesse contexto. Os três artigos revelaram que as consequências do uso da IA no processo de seleção abrangem uma interação complexa entre benefícios e desvantagens, sendo essas últimas em quantidade superior, que impactam significativamente os usuários dos sistemas, as experiências dos candidatos, os profissionais de talent acquisition, as organizações e a sociedade. As três publicações revelam que as consequências do uso de IA na seleção de pessoas envolvem uma interação complexa de benefícios e desvantagens que afetam significativamente os candidatos, os profissionais de talent acquisition (TA), as organizações e a sociedade. As descobertas revelam que um processo de seleção de pessoas é fragmentado, com diferentes tipos de sistemas processando grandes quantidades de dados de candidatos para fornecer resultados complementares, no qual o profissional de TA deve supervisionar e monitorar a fim de selecionar os indivíduos mais \"adequados\" para o trabalho. Ao personalizar recomendações com base em padrões anteriores de tomada de decisão, esses sistemas dão a aparência de eficiência, ao mesmo tempo em que influenciam a estrutura e o comportamento organizacional. Embora essas tecnologias forneçam os resultados esperados, como a redução dos períodos de recrutamento, elas não são isentas de controvérsias, e as consequências indesejáveis superam as desejáveis.Biblioteca Digitais de Teses e Dissertações da USPVasconcellos, LilianaSilva, Humberta Karinne da Conceição Santos2025-06-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/12/12139/tde-03102025-113052/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-10T19:09:02Zoai:teses.usp.br:tde-03102025-113052Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-10T19:09:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Artificial intelligence in the hiring process: uses and consequences
A inteligência artificial no processo de seleção de pessoas: usos e consequências
title Artificial intelligence in the hiring process: uses and consequences
spellingShingle Artificial intelligence in the hiring process: uses and consequences
Silva, Humberta Karinne da Conceição Santos
Consequences of AI usage
Consequências do uso da IA
Gestão de pessoas
Hiring
Human resource management
Personnel selection
Seleção de pessoas
Usage of artificial intelligence
Uso de inteligência artificial
title_short Artificial intelligence in the hiring process: uses and consequences
title_full Artificial intelligence in the hiring process: uses and consequences
title_fullStr Artificial intelligence in the hiring process: uses and consequences
title_full_unstemmed Artificial intelligence in the hiring process: uses and consequences
title_sort Artificial intelligence in the hiring process: uses and consequences
author Silva, Humberta Karinne da Conceição Santos
author_facet Silva, Humberta Karinne da Conceição Santos
author_role author
dc.contributor.none.fl_str_mv Vasconcellos, Liliana
dc.contributor.author.fl_str_mv Silva, Humberta Karinne da Conceição Santos
dc.subject.por.fl_str_mv Consequences of AI usage
Consequências do uso da IA
Gestão de pessoas
Hiring
Human resource management
Personnel selection
Seleção de pessoas
Usage of artificial intelligence
Uso de inteligência artificial
topic Consequences of AI usage
Consequências do uso da IA
Gestão de pessoas
Hiring
Human resource management
Personnel selection
Seleção de pessoas
Usage of artificial intelligence
Uso de inteligência artificial
description In the neoliberal context, Artificial Intelligence (AI) is employed across all spheres of human activity, from the most prosaic tasks to the most complex. In both the global and Brazilian contexts, organizations have increasingly adopted 4.0 technologies as part of broader automation strategies, integrating them into various practices, including hiring, in Human Resource Management (HRM). The aim has been to make these processes more agile, objective, and efficient. However, algorithms are developed and used by people, and as such, they inherently carry conscious and/or unconscious biases embedded in their training data, design, and user outputs; therefore, these systems are not neutral. These biases manifest through the choice of input parameters, thresholds, and constraints, which consequently influence how algorithms operate and the decisions they generate. When applying technology to rank candidates, Talent Acquisition (TA) professionals are subject to hidden criteria that may be discretionary and, depending on the social and organizational context, even discriminatory. Moreover, this impact becomes especially significant when users cannot explain the system\'s outputs. Therefore, this research aims to address the following question: To what extent does the continuous use of artificial intelligence in the hiring process lead to undesirable consequences and changes for stakeholders? To address this question, the dissertation was divided into three articles, each aimed at exploring the phenomenon from complementary angles: (1) A systematic literature review on the consequences of AI use in hiring; (2) A qualitative study analyzing how AI is transforming the hiring processes of German headquarters and their Brazilian subsidiaries; (3) A qualitative investigation of stakeholder experiences within the hiring process, focusing on identify the consequences of AI adoption. The three publications reveal that the consequences of using AI in hiring encompass a complex interplay of benefits and drawbacks that significantly affect users, candidate experiences, the talent acquisition profession, organizations, and society. The findings reveal a hiring process that is fragmented, with different kinds of systems processing large amounts of applicant data to provide unique results, which the TA professional must oversee and monitor to create shortlists of the most \"suitable\" individuals. By customizing recommendations based on past decision- making patterns, these systems appear efficient while influencing organizational structure and behavior. Although these technologies deliver the expected results, such as reduced hiring time, they are not without controversy, and the undesirable consequences outweigh the desirable ones.
publishDate 2025
dc.date.none.fl_str_mv 2025-06-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/12/12139/tde-03102025-113052/
url https://www.teses.usp.br/teses/disponiveis/12/12139/tde-03102025-113052/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370470429130752