Abordagens evolutivas para agrupamento relacional de dados

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Horta, Danilo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08042010-150736/
Resumo: O agrupamento de dados é uma técnica fundamental em aplicações de diversos campos do mercado e da ciência, como, por exemplo, no comércio, na biologia, na psiquiatria, na astronomia e na mineração da Web. Ocorre que em um subconjunto desses campos, como engenharia industrial, ciências sociais, engenharia sísmica e recuperação de documentos, as bases de dados são usualmente descritas apenas pelas proximidades entre os objetos (denominadas bases de dados relacionais). Mesmo em aplicações nas quais os dados não são naturalmente relacionais, o uso de bases relacionais permite que os dados em si sejam mantidos sob sigilo, o que pode ser de grande valia para bancos ou corretoras, por exemplo. Nesta dissertação é apresentada uma revisão de algoritmos de agrupamento de dados que lidam com bases de dados relacionais, com foco em algoritmos que produzem partições rígidas (hard ou crisp) dos dados. Particular ênfase é dada aos algoritmos evolutivos, que têm se mostrado capazes de resolver problemas de agrupamento de dados com relativa acurácia e de forma computacionalmente eficiente. Nesse contexto, propõe-se nesta dissertação um novo algoritmo evolutivo de agrupamento capaz de operar sobre dados relacionais e também capaz de estimar automaticamente o número de grupos nos dados (usualmente desconhecido em aplicações práticas). É demonstrado empiricamente que esse novo algoritmo pode superar métodos tradicionais da literatura em termos de eficiência computacional e acurácia
id USP_85c7a49dcb11dc75c7f737fe4286751b
oai_identifier_str oai:teses.usp.br:tde-08042010-150736
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Abordagens evolutivas para agrupamento relacional de dadosEvolutionary approaches to relational data clusteringAbordagens evolutivasAgrupamento de dados relacionaisEstimação do número de gruposEstimation of the number of clustersEvolutionary approachesRelational data clusteringO agrupamento de dados é uma técnica fundamental em aplicações de diversos campos do mercado e da ciência, como, por exemplo, no comércio, na biologia, na psiquiatria, na astronomia e na mineração da Web. Ocorre que em um subconjunto desses campos, como engenharia industrial, ciências sociais, engenharia sísmica e recuperação de documentos, as bases de dados são usualmente descritas apenas pelas proximidades entre os objetos (denominadas bases de dados relacionais). Mesmo em aplicações nas quais os dados não são naturalmente relacionais, o uso de bases relacionais permite que os dados em si sejam mantidos sob sigilo, o que pode ser de grande valia para bancos ou corretoras, por exemplo. Nesta dissertação é apresentada uma revisão de algoritmos de agrupamento de dados que lidam com bases de dados relacionais, com foco em algoritmos que produzem partições rígidas (hard ou crisp) dos dados. Particular ênfase é dada aos algoritmos evolutivos, que têm se mostrado capazes de resolver problemas de agrupamento de dados com relativa acurácia e de forma computacionalmente eficiente. Nesse contexto, propõe-se nesta dissertação um novo algoritmo evolutivo de agrupamento capaz de operar sobre dados relacionais e também capaz de estimar automaticamente o número de grupos nos dados (usualmente desconhecido em aplicações práticas). É demonstrado empiricamente que esse novo algoritmo pode superar métodos tradicionais da literatura em termos de eficiência computacional e acuráciaData clustering is a fundamental technique for applications in several fields of science and marketing, as commerce, biology, psychiatry, astronomy, and Web mining. However, in a subset of these fields, such as industrial engineering, social sciences, earthquake engineering, and retrieval of documents, datasets are usually described only by proximities between their objects (called relational datasets). Even in applications where the data are not naturally relational, the use of relational datasets preserves the datas secrecy, which can be of great value to banks or brokers, for instance. This dissertation presents a review of data clustering algorithms which deals with relational datasets, with a focus on algorithms that produce hard or crisp partitions of data. Particular emphasis is given to evolutionary algorithms, which have proved of being able to solve problems of data clustering accurately and efficiently. In this context, we propose a new evolutionary algorithm for clustering able to operate on relational datasets and also able to automatically estimate the number of clusters (which is usually unknown in practical applications). It is empirically shown that this new algorithm can overcome traditional methods described in the literature in terms of computational efficiency and accuracyBiblioteca Digitais de Teses e Dissertações da USPCampello, Ricardo José Gabrielli BarretoHorta, Danilo2010-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-08042010-150736/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-08042010-150736Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Abordagens evolutivas para agrupamento relacional de dados
Evolutionary approaches to relational data clustering
title Abordagens evolutivas para agrupamento relacional de dados
spellingShingle Abordagens evolutivas para agrupamento relacional de dados
Horta, Danilo
Abordagens evolutivas
Agrupamento de dados relacionais
Estimação do número de grupos
Estimation of the number of clusters
Evolutionary approaches
Relational data clustering
title_short Abordagens evolutivas para agrupamento relacional de dados
title_full Abordagens evolutivas para agrupamento relacional de dados
title_fullStr Abordagens evolutivas para agrupamento relacional de dados
title_full_unstemmed Abordagens evolutivas para agrupamento relacional de dados
title_sort Abordagens evolutivas para agrupamento relacional de dados
author Horta, Danilo
author_facet Horta, Danilo
author_role author
dc.contributor.none.fl_str_mv Campello, Ricardo José Gabrielli Barreto
dc.contributor.author.fl_str_mv Horta, Danilo
dc.subject.por.fl_str_mv Abordagens evolutivas
Agrupamento de dados relacionais
Estimação do número de grupos
Estimation of the number of clusters
Evolutionary approaches
Relational data clustering
topic Abordagens evolutivas
Agrupamento de dados relacionais
Estimação do número de grupos
Estimation of the number of clusters
Evolutionary approaches
Relational data clustering
description O agrupamento de dados é uma técnica fundamental em aplicações de diversos campos do mercado e da ciência, como, por exemplo, no comércio, na biologia, na psiquiatria, na astronomia e na mineração da Web. Ocorre que em um subconjunto desses campos, como engenharia industrial, ciências sociais, engenharia sísmica e recuperação de documentos, as bases de dados são usualmente descritas apenas pelas proximidades entre os objetos (denominadas bases de dados relacionais). Mesmo em aplicações nas quais os dados não são naturalmente relacionais, o uso de bases relacionais permite que os dados em si sejam mantidos sob sigilo, o que pode ser de grande valia para bancos ou corretoras, por exemplo. Nesta dissertação é apresentada uma revisão de algoritmos de agrupamento de dados que lidam com bases de dados relacionais, com foco em algoritmos que produzem partições rígidas (hard ou crisp) dos dados. Particular ênfase é dada aos algoritmos evolutivos, que têm se mostrado capazes de resolver problemas de agrupamento de dados com relativa acurácia e de forma computacionalmente eficiente. Nesse contexto, propõe-se nesta dissertação um novo algoritmo evolutivo de agrupamento capaz de operar sobre dados relacionais e também capaz de estimar automaticamente o número de grupos nos dados (usualmente desconhecido em aplicações práticas). É demonstrado empiricamente que esse novo algoritmo pode superar métodos tradicionais da literatura em termos de eficiência computacional e acurácia
publishDate 2010
dc.date.none.fl_str_mv 2010-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08042010-150736/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08042010-150736/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257971135873024