De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-14102022-113459/ |
Resumo: | Xanthomonas is one of the most important phytopathogens; it severely attacks over 500 different hosts around the world. Plants have evolved various defense mechanisms aimed at preventing pathogen proliferation and controlling disease. To improve our understanding of the defense mechanisms deployed by different hosts in response to Xanthomonas attack, a broad review of the literature was conducted and forms the first chapter of this thesis. We outline our current knowledge of the molecular basis of immunity systems in different crops susceptible to Xanthomonas. Among its tropical hosts, cultivated passion fruits are very vulnerable to this pathogen, leading to severe losses in commercial orchards. The disease, known as bacterial spot, is caused by Xanthomonas axonopodis pv. passiflorae (Xap). There is no molecular information on the interaction between Passiflora alata (sweet passion fruit) and Xap, and studies are therefore required to improve our understanding of this pathosystem. Thus, our aim was to analyze the transcriptome profile of P. alata in response to Xap infection. The results of this analysis are given in Chapter 2. Total RNA of healthy and Xap-infected leaves was isolated 5 days post inoculation and sequenced on the Illumina NextSeq platform, resulting in some 50 million paired-end reads per sample. Since there is no P. alata genome available for use as a reference, de novo assembly was performed, followed by functional annotation of sequence reads. Differential expression analysis revealed 638 upregulated and 604 downregulated transcripts, based on an FDR-adjusted p-value ≤ 0.05 and a fold change ≥ 1.5 and ≤ -1.5. Pattern recognition receptors (PRRs) and resistance genes were detected. On perceiving the pathogen, these receptors trigger defense response signaling entailing a rapid increase in calcium influx and the production of reactive oxygen species (ROS). Next, calcium-dependent kinases activate pathogenesis-related genes and result in the production of volatile compounds (germacrene D and nerolidol) to signal hormone production. Importantly, two susceptibility genes, LOB1 and SWEET10, were identified as upregulated in sweet passion fruit in the presence of pathogen infection. LOB1 is a member of the Lateral Organ Boundaries family of transcription factors, and SWEET10 is a sugar transporter. We suggest that knocking out these genes might result in increased tolerance or even resistance to Xap, since two resistance genes containing the CC/TIR-NBS-LRR domain were also identified. A quantitative RT-PCR of selected genes was performed to validate differential gene expression analysis. Our findings not only provide the first complete transcriptome analysis of the molecular mechanisms in the sweet passion fruit\'s response to Xap infection, but also supply valuable information on potential target genes for plant gene editing. |
| id |
USP_8bfbd5e940f139eadc6176769553a0bc |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-14102022-113459 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infectionMontagem de novo do transcriptoma, anotação funcional e perfil de expressão do maracujá doce (Passiflora alata) em resposta à infecção por Xanthomonas axonopodis pv. passifloraePassiflora alataPassiflora alataXanthomonasXanthomonasAnálise de transcriptomaMaracujá docePlant susceptibilityRNA-SeqRNA-SeqSuscetibilidade de plantasSweet passion fruitTranscriptome analysisXanthomonas is one of the most important phytopathogens; it severely attacks over 500 different hosts around the world. Plants have evolved various defense mechanisms aimed at preventing pathogen proliferation and controlling disease. To improve our understanding of the defense mechanisms deployed by different hosts in response to Xanthomonas attack, a broad review of the literature was conducted and forms the first chapter of this thesis. We outline our current knowledge of the molecular basis of immunity systems in different crops susceptible to Xanthomonas. Among its tropical hosts, cultivated passion fruits are very vulnerable to this pathogen, leading to severe losses in commercial orchards. The disease, known as bacterial spot, is caused by Xanthomonas axonopodis pv. passiflorae (Xap). There is no molecular information on the interaction between Passiflora alata (sweet passion fruit) and Xap, and studies are therefore required to improve our understanding of this pathosystem. Thus, our aim was to analyze the transcriptome profile of P. alata in response to Xap infection. The results of this analysis are given in Chapter 2. Total RNA of healthy and Xap-infected leaves was isolated 5 days post inoculation and sequenced on the Illumina NextSeq platform, resulting in some 50 million paired-end reads per sample. Since there is no P. alata genome available for use as a reference, de novo assembly was performed, followed by functional annotation of sequence reads. Differential expression analysis revealed 638 upregulated and 604 downregulated transcripts, based on an FDR-adjusted p-value ≤ 0.05 and a fold change ≥ 1.5 and ≤ -1.5. Pattern recognition receptors (PRRs) and resistance genes were detected. On perceiving the pathogen, these receptors trigger defense response signaling entailing a rapid increase in calcium influx and the production of reactive oxygen species (ROS). Next, calcium-dependent kinases activate pathogenesis-related genes and result in the production of volatile compounds (germacrene D and nerolidol) to signal hormone production. Importantly, two susceptibility genes, LOB1 and SWEET10, were identified as upregulated in sweet passion fruit in the presence of pathogen infection. LOB1 is a member of the Lateral Organ Boundaries family of transcription factors, and SWEET10 is a sugar transporter. We suggest that knocking out these genes might result in increased tolerance or even resistance to Xap, since two resistance genes containing the CC/TIR-NBS-LRR domain were also identified. A quantitative RT-PCR of selected genes was performed to validate differential gene expression analysis. Our findings not only provide the first complete transcriptome analysis of the molecular mechanisms in the sweet passion fruit\'s response to Xap infection, but also supply valuable information on potential target genes for plant gene editing.Xanthomonas é um dos fitopatógenos mais importantes, atacando severamente mais de 500 hospedeiros diferentes ao redor do mundo. Por outro lado, as plantas desenvolveram mecanismos de defesa a fim de prevenir a proliferação de patógenos e, consequentemente, a doença. Assim, visando um melhor entendimento dos mecanismos de defesa em diferentes hospedeiros em resposta ao ataque de Xanthomonas, uma ampla revisão da literatura foi realizada e constitui o primeiro capítulo desta tese. Foi apresentado o conhecimento atual das bases moleculares do sistema imune em diferentes culturas suscetíveis à Xanthomonas. Entre os hospedeiros tropicais, os maracujazeiros cultivados são muito vulneráveis a este patógeno levando a graves perdas em pomares comerciais. A doença, conhecida como mancha bacteriana, é causada por Xanthomonas axonopodis pv. passiflorae (Xap). Não há informações moleculares sobre a interação de Passiflora alata (o maracujá doce) e Xap, tornando importante a condução de estudos para entender esse patossistema. Assim, nosso objetivo foi analisar o perfil do transcriptoma de P. alata em resposta à infecção por Xap. Os resultados desta análise constituem o segundo capítulo desta tese. Para este fim, o RNA total de folhas saudáveis e infectadas com Xap foi isolado, 5 dias após a inoculação, e sequenciado usando a plataforma NextSeq (Illumina), resultando em cerca de 50 milhões de leituras pareadas por amostra. Como não há genoma de P. alata disponível para ser usado como referência, foi realizada uma montagem de novo, seguida de anotação funcional dos transcritos. A análise de expressão diferencial revelou 638 transcritos induzidos e 604 reprimidos, considerando FDR ≤ 0,05 e fold change ≥ 1,5 e ≤ -1.5. Entre eles, foram detectados receptores de reconhecimento de padrões (PRRs) e genes de resistência que, após a percepção do patógeno, desencadeiam uma sinalização de resposta de defesa envolvendo um rápido aumento do influxo de cálcio e a produção de espécies reativas de oxigênio (ROS). Em seguida, quinases dependentes de cálcio ativam genes relacionados à patogênese e à produção de compostos voláteis (os terpenos germacrene D e nerolidol) que atuam como sinais para a produção de hormônios. É importante ressaltar que dois genes de suscetibilidade, LOB1 e SWEET10, foram identificados superexpressos em maracujá doce sob a infecção do patógeno. O primeiro é um fator de transcrição membro da família Lateral Organ Boundaries (LOB), e o segundo é um transportador de açúcar. Sugere-se que um nocaute desses genes pode resultar em aumento da tolerância ou mesmo resistência contra Xap, uma vez que também foram identificados dois genes de resistência contendo o domínio CC/TIR-NBS-LRR. A RT-PCR quantitativa de genes selecionados foi realizada para validar a análise de expressão gênica diferencial. Nossas descobertas não apenas fornecem uma primeira análise completa do transcriptoma da resposta do maracujá doce à infecção por Xap, mas também revelam uma informação valiosa sobre potenciais genes-alvo para edição de genes de plantas.Biblioteca Digitais de Teses e Dissertações da USPVieira, Maria Lucia CarneiroCardoso, Jéssica Luana Souza2022-08-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-14102022-113459/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-10-17T13:25:34Zoai:teses.usp.br:tde-14102022-113459Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-10-17T13:25:34Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection Montagem de novo do transcriptoma, anotação funcional e perfil de expressão do maracujá doce (Passiflora alata) em resposta à infecção por Xanthomonas axonopodis pv. passiflorae |
| title |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| spellingShingle |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection Cardoso, Jéssica Luana Souza Passiflora alata Passiflora alata Xanthomonas Xanthomonas Análise de transcriptoma Maracujá doce Plant susceptibility RNA-Seq RNA-Seq Suscetibilidade de plantas Sweet passion fruit Transcriptome analysis |
| title_short |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| title_full |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| title_fullStr |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| title_full_unstemmed |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| title_sort |
De novo transcriptome assembly, functional annotation and expression profiling of sweet passion fruit (Passiflora alata) in response to Xanthomonas axonopodis pv. passiflorae infection |
| author |
Cardoso, Jéssica Luana Souza |
| author_facet |
Cardoso, Jéssica Luana Souza |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Vieira, Maria Lucia Carneiro |
| dc.contributor.author.fl_str_mv |
Cardoso, Jéssica Luana Souza |
| dc.subject.por.fl_str_mv |
Passiflora alata Passiflora alata Xanthomonas Xanthomonas Análise de transcriptoma Maracujá doce Plant susceptibility RNA-Seq RNA-Seq Suscetibilidade de plantas Sweet passion fruit Transcriptome analysis |
| topic |
Passiflora alata Passiflora alata Xanthomonas Xanthomonas Análise de transcriptoma Maracujá doce Plant susceptibility RNA-Seq RNA-Seq Suscetibilidade de plantas Sweet passion fruit Transcriptome analysis |
| description |
Xanthomonas is one of the most important phytopathogens; it severely attacks over 500 different hosts around the world. Plants have evolved various defense mechanisms aimed at preventing pathogen proliferation and controlling disease. To improve our understanding of the defense mechanisms deployed by different hosts in response to Xanthomonas attack, a broad review of the literature was conducted and forms the first chapter of this thesis. We outline our current knowledge of the molecular basis of immunity systems in different crops susceptible to Xanthomonas. Among its tropical hosts, cultivated passion fruits are very vulnerable to this pathogen, leading to severe losses in commercial orchards. The disease, known as bacterial spot, is caused by Xanthomonas axonopodis pv. passiflorae (Xap). There is no molecular information on the interaction between Passiflora alata (sweet passion fruit) and Xap, and studies are therefore required to improve our understanding of this pathosystem. Thus, our aim was to analyze the transcriptome profile of P. alata in response to Xap infection. The results of this analysis are given in Chapter 2. Total RNA of healthy and Xap-infected leaves was isolated 5 days post inoculation and sequenced on the Illumina NextSeq platform, resulting in some 50 million paired-end reads per sample. Since there is no P. alata genome available for use as a reference, de novo assembly was performed, followed by functional annotation of sequence reads. Differential expression analysis revealed 638 upregulated and 604 downregulated transcripts, based on an FDR-adjusted p-value ≤ 0.05 and a fold change ≥ 1.5 and ≤ -1.5. Pattern recognition receptors (PRRs) and resistance genes were detected. On perceiving the pathogen, these receptors trigger defense response signaling entailing a rapid increase in calcium influx and the production of reactive oxygen species (ROS). Next, calcium-dependent kinases activate pathogenesis-related genes and result in the production of volatile compounds (germacrene D and nerolidol) to signal hormone production. Importantly, two susceptibility genes, LOB1 and SWEET10, were identified as upregulated in sweet passion fruit in the presence of pathogen infection. LOB1 is a member of the Lateral Organ Boundaries family of transcription factors, and SWEET10 is a sugar transporter. We suggest that knocking out these genes might result in increased tolerance or even resistance to Xap, since two resistance genes containing the CC/TIR-NBS-LRR domain were also identified. A quantitative RT-PCR of selected genes was performed to validate differential gene expression analysis. Our findings not only provide the first complete transcriptome analysis of the molecular mechanisms in the sweet passion fruit\'s response to Xap infection, but also supply valuable information on potential target genes for plant gene editing. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-08-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-14102022-113459/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-14102022-113459/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258131880476672 |