Exportação concluída — 

Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Marcomini, Karem Daiane
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-113320/
Resumo: Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Nesse âmbito, a ultrassonografia tornou-se uma ferramenta indispensável na distinção entre lesões benignas e malignas. Devido a subjetividade na interpretação de imagens, os esquemas CAD têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia para a detecção e caracterização automática de achados ultrassonográficos da mama. Os ensaios tiveram por base a utilização de imagens obtidas por simuladores e, a partir de resultados consideráveis, foram aplicados sobre exames clínicos. O processo teve início com o emprego de um pré-processamento (filtro de wiener, equalização e filtro da mediana) para a minimização do ruído. Em seguida, cinco técnicas de segmentação foram averiguadas a fim de determinar a representação mais concisa. Dentre elas, a rede neural SOM mostrou-se como a mais relevante. Após a delimitação do objeto, foram definidas as características mais expressivas para a descrição morfológica do achado. Esses dados serviram de entrada para o classificador neural MLP. A acurácia alcançada durante o treinamento em imagens simuladas foi de 94,2%, produzindo um Az de 0,92. Para avaliar a generalização dos dados, foi efetuada a classificação com imagens desconhecidas ao sistema, tanto em simuladores quanto em exames clínicos, nesses casos a acurácia foi de 90% e 81%, respectivamente. O classificador proposto apresentou-se como uma importante ferramenta de auxílio ao diagnóstico em ultrassonografias de mama.
id USP_8f52544ec6caf430d4441f3301ce07ff
oai_identifier_str oai:teses.usp.br:tde-29042013-113320
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mamaApplication of artificial neural network models in segmentation and classification of nodules in digital images of breast ultrasoundArtificial neural networkBreast cancerCâncer de mamaClassificaçãoClassificationImage processingProcessamento de imagensRedes neurais artificiaisUltrasoundUltrassomMuitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Nesse âmbito, a ultrassonografia tornou-se uma ferramenta indispensável na distinção entre lesões benignas e malignas. Devido a subjetividade na interpretação de imagens, os esquemas CAD têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia para a detecção e caracterização automática de achados ultrassonográficos da mama. Os ensaios tiveram por base a utilização de imagens obtidas por simuladores e, a partir de resultados consideráveis, foram aplicados sobre exames clínicos. O processo teve início com o emprego de um pré-processamento (filtro de wiener, equalização e filtro da mediana) para a minimização do ruído. Em seguida, cinco técnicas de segmentação foram averiguadas a fim de determinar a representação mais concisa. Dentre elas, a rede neural SOM mostrou-se como a mais relevante. Após a delimitação do objeto, foram definidas as características mais expressivas para a descrição morfológica do achado. Esses dados serviram de entrada para o classificador neural MLP. A acurácia alcançada durante o treinamento em imagens simuladas foi de 94,2%, produzindo um Az de 0,92. Para avaliar a generalização dos dados, foi efetuada a classificação com imagens desconhecidas ao sistema, tanto em simuladores quanto em exames clínicos, nesses casos a acurácia foi de 90% e 81%, respectivamente. O classificador proposto apresentou-se como uma importante ferramenta de auxílio ao diagnóstico em ultrassonografias de mama.Many procedures have been developed to assist in the early diagnosis of breast cancer. In this context, ultrasound has become an indispensable tool to distinguish benign and malignant lesions. Due to the subjectivity on interpreting images, CAD schemes have provided to the specialist a second opinion more accurate and reliable. Thus, this research presents a methodology for the automatic detection and characterization of breast sonographic findings. The tests were based the use of images obtained by simulators and, as considerable results, were applied to clinical examinations. The process was started employing of a preprocessing (wiener filter, equalization and median filter) to minimize noise. Then, five segmentation techniques were investigated to determine the most concise representation of the lesion contour, enabling to consider the neural network SOM the most relevant. After the delimitation of the object, the most expressive features were defined to the morphological description of the finding, generating the input data to the neural classifier MLP. The accuracy achieved during training with simulated images was 94.2%, producing an Az of 0.92. To evaluating the data generalization, the classification was performed with a group of unknown images to the system, both to simulators as to clinical trials, resulting in an accuracy of 90% and 81%, respectively. The proposed classifier proved to be an important tool for the diagnosis in ultrasonography breast.Biblioteca Digitais de Teses e Dissertações da USPSchiabel, HomeroMarcomini, Karem Daiane2013-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-113320/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-29042013-113320Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
Application of artificial neural network models in segmentation and classification of nodules in digital images of breast ultrasound
title Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
spellingShingle Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
Marcomini, Karem Daiane
Artificial neural network
Breast cancer
Câncer de mama
Classificação
Classification
Image processing
Processamento de imagens
Redes neurais artificiais
Ultrasound
Ultrassom
title_short Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
title_full Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
title_fullStr Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
title_full_unstemmed Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
title_sort Aplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama
author Marcomini, Karem Daiane
author_facet Marcomini, Karem Daiane
author_role author
dc.contributor.none.fl_str_mv Schiabel, Homero
dc.contributor.author.fl_str_mv Marcomini, Karem Daiane
dc.subject.por.fl_str_mv Artificial neural network
Breast cancer
Câncer de mama
Classificação
Classification
Image processing
Processamento de imagens
Redes neurais artificiais
Ultrasound
Ultrassom
topic Artificial neural network
Breast cancer
Câncer de mama
Classificação
Classification
Image processing
Processamento de imagens
Redes neurais artificiais
Ultrasound
Ultrassom
description Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Nesse âmbito, a ultrassonografia tornou-se uma ferramenta indispensável na distinção entre lesões benignas e malignas. Devido a subjetividade na interpretação de imagens, os esquemas CAD têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia para a detecção e caracterização automática de achados ultrassonográficos da mama. Os ensaios tiveram por base a utilização de imagens obtidas por simuladores e, a partir de resultados consideráveis, foram aplicados sobre exames clínicos. O processo teve início com o emprego de um pré-processamento (filtro de wiener, equalização e filtro da mediana) para a minimização do ruído. Em seguida, cinco técnicas de segmentação foram averiguadas a fim de determinar a representação mais concisa. Dentre elas, a rede neural SOM mostrou-se como a mais relevante. Após a delimitação do objeto, foram definidas as características mais expressivas para a descrição morfológica do achado. Esses dados serviram de entrada para o classificador neural MLP. A acurácia alcançada durante o treinamento em imagens simuladas foi de 94,2%, produzindo um Az de 0,92. Para avaliar a generalização dos dados, foi efetuada a classificação com imagens desconhecidas ao sistema, tanto em simuladores quanto em exames clínicos, nesses casos a acurácia foi de 90% e 81%, respectivamente. O classificador proposto apresentou-se como uma importante ferramenta de auxílio ao diagnóstico em ultrassonografias de mama.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-113320/
url http://www.teses.usp.br/teses/disponiveis/18/18152/tde-29042013-113320/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279240149237760