Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade.
| Ano de defesa: | 2002 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04072002-144610/ |
Resumo: | Com o avanço da tecnologia, grandes volumes de dados estão sendo coletados e acumulados numa velocidade espantosa. Data Mining constitui um campo de pesquisa recente em Inteligência Artificial, cujo objetivo é extrair conhecimento de grandes bases de dados. Um dos tópicos tratados em Data Mining para extrair conhecimento é o uso de algoritmos de Aprendizado de Máquina em grandes volumes de dados. Alguns algoritmos de Aprendizado de Máquina são capazes de criar generalizações, ou descrever conceitos, a partir de um conjunto de dados previamente rotulados. Esses algoritmos são conhecidos como indutores e são capazes de induzir uma hipótese (ou classificador). Um classificador pode estar descrito sob uma forma simbólica explícita, e assim, apresentar uma explicação do conceito aprendido de forma inteligível ao ser humano. Uma dessas formas de representação simbólica explícita são as regras de conhecimento. Especialmente em Data Mining, o volume de regras de conhecimento que descrevem um classificador simbólico pode ser muito grande. Isso dificulta muito a análise de regras individuais ou de um grupo de regras por parte do usuário desse conhecimento. No intuito de propor uma solução para essa dificuldade, a análise automática de regras, utilizando medidas de avaliação e de interessabilidade, destaca-se como uma das fontes de resultados positivos da aplicação do Aprendizado de Máquina na área de Data Mining. Neste trabalho é apresentado o RuleSystem, um sistema computacional protótipo que implementa funcionalidades voltadas para Aprendizado de Máquina e Data Mining. Uma dessas funcionalidades, implementadas no RuleSystem, refere-se à análise automática de regras. O Módulo de Análise de regras, proposto neste trabalho, implementa diversas medidas de avaliação e de interessabilidade de regras, permitindo assim realizar uma análise tanto quantitativa quanto qualitativa das regras que constituem a(s) hipótese(s) induzida(s) por algoritmos de Aprendizado de Maquina simbólico. |
| id |
USP_9023c784d376b3255af4f7795a7a6428 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04072002-144610 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade.aprendizado de máquina simbólicodata mininginteligência artificialregras de conhecimentoCom o avanço da tecnologia, grandes volumes de dados estão sendo coletados e acumulados numa velocidade espantosa. Data Mining constitui um campo de pesquisa recente em Inteligência Artificial, cujo objetivo é extrair conhecimento de grandes bases de dados. Um dos tópicos tratados em Data Mining para extrair conhecimento é o uso de algoritmos de Aprendizado de Máquina em grandes volumes de dados. Alguns algoritmos de Aprendizado de Máquina são capazes de criar generalizações, ou descrever conceitos, a partir de um conjunto de dados previamente rotulados. Esses algoritmos são conhecidos como indutores e são capazes de induzir uma hipótese (ou classificador). Um classificador pode estar descrito sob uma forma simbólica explícita, e assim, apresentar uma explicação do conceito aprendido de forma inteligível ao ser humano. Uma dessas formas de representação simbólica explícita são as regras de conhecimento. Especialmente em Data Mining, o volume de regras de conhecimento que descrevem um classificador simbólico pode ser muito grande. Isso dificulta muito a análise de regras individuais ou de um grupo de regras por parte do usuário desse conhecimento. No intuito de propor uma solução para essa dificuldade, a análise automática de regras, utilizando medidas de avaliação e de interessabilidade, destaca-se como uma das fontes de resultados positivos da aplicação do Aprendizado de Máquina na área de Data Mining. Neste trabalho é apresentado o RuleSystem, um sistema computacional protótipo que implementa funcionalidades voltadas para Aprendizado de Máquina e Data Mining. Uma dessas funcionalidades, implementadas no RuleSystem, refere-se à análise automática de regras. O Módulo de Análise de regras, proposto neste trabalho, implementa diversas medidas de avaliação e de interessabilidade de regras, permitindo assim realizar uma análise tanto quantitativa quanto qualitativa das regras que constituem a(s) hipótese(s) induzida(s) por algoritmos de Aprendizado de Maquina simbólico.Biblioteca Digitais de Teses e Dissertações da USPMonard, Maria CarolinaGomes, Alan Keller2002-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-04072002-144610/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-04072002-144610Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| title |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| spellingShingle |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. Gomes, Alan Keller aprendizado de máquina simbólico data mining inteligência artificial regras de conhecimento |
| title_short |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| title_full |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| title_fullStr |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| title_full_unstemmed |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| title_sort |
Análise do conhecimento extraído de classificadores simbólicos utilizando medidas de avaliação e de interessabilidade. |
| author |
Gomes, Alan Keller |
| author_facet |
Gomes, Alan Keller |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Monard, Maria Carolina |
| dc.contributor.author.fl_str_mv |
Gomes, Alan Keller |
| dc.subject.por.fl_str_mv |
aprendizado de máquina simbólico data mining inteligência artificial regras de conhecimento |
| topic |
aprendizado de máquina simbólico data mining inteligência artificial regras de conhecimento |
| description |
Com o avanço da tecnologia, grandes volumes de dados estão sendo coletados e acumulados numa velocidade espantosa. Data Mining constitui um campo de pesquisa recente em Inteligência Artificial, cujo objetivo é extrair conhecimento de grandes bases de dados. Um dos tópicos tratados em Data Mining para extrair conhecimento é o uso de algoritmos de Aprendizado de Máquina em grandes volumes de dados. Alguns algoritmos de Aprendizado de Máquina são capazes de criar generalizações, ou descrever conceitos, a partir de um conjunto de dados previamente rotulados. Esses algoritmos são conhecidos como indutores e são capazes de induzir uma hipótese (ou classificador). Um classificador pode estar descrito sob uma forma simbólica explícita, e assim, apresentar uma explicação do conceito aprendido de forma inteligível ao ser humano. Uma dessas formas de representação simbólica explícita são as regras de conhecimento. Especialmente em Data Mining, o volume de regras de conhecimento que descrevem um classificador simbólico pode ser muito grande. Isso dificulta muito a análise de regras individuais ou de um grupo de regras por parte do usuário desse conhecimento. No intuito de propor uma solução para essa dificuldade, a análise automática de regras, utilizando medidas de avaliação e de interessabilidade, destaca-se como uma das fontes de resultados positivos da aplicação do Aprendizado de Máquina na área de Data Mining. Neste trabalho é apresentado o RuleSystem, um sistema computacional protótipo que implementa funcionalidades voltadas para Aprendizado de Máquina e Data Mining. Uma dessas funcionalidades, implementadas no RuleSystem, refere-se à análise automática de regras. O Módulo de Análise de regras, proposto neste trabalho, implementa diversas medidas de avaliação e de interessabilidade de regras, permitindo assim realizar uma análise tanto quantitativa quanto qualitativa das regras que constituem a(s) hipótese(s) induzida(s) por algoritmos de Aprendizado de Maquina simbólico. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-05-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04072002-144610/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04072002-144610/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257854071799808 |