Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Medeiros, Ananda Sanches
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/17/17136/tde-08082023-144205/
Resumo: Biofilms are complex structures formed by bacterial communities of the same or different species, embedded in an extracellular matrix composed of polymeric extracellular substances (EPS), such as polysaccharides, proteins (as curli structures), and nucleic acids. The regulatory networks of biofilm formation are composed of the integration of environmental and intracellular stimuli. One of its layers is transcriptional regulation, which is capable of drastically altering bacterial gene expression, converting it from a free-living style to a sessile behavior. To better understand how biofilm-related genes are regulated by different transcription factors, we aimed to apply the SortSeq technique to deeply investigate the architecture of central promoters of biofilm formation. We started this work with 21 promoters of interest, associated directly with biofilm formation and motility. A library containing these 21 promoters mutated randomly at a 10% rate was constructed and tested. The preliminary tests showed that this library had too many mutations and truncations per promoter sequence, and few promoter variants, making unfeasible the acquisition of results with it. This way, we decided to focus on two main promoters of genes for biofilm formation, related to curli synthesis: csgBAp, and csgDp. Their promoters are restricted to the same intergenic region between their genes and have a strict relation, once csgD is a master regulator of transcription of the csgBA operon. We divided this intergenic region into four parts and built libraries with region-focused random mutations. These four libraries were individually inserted into the original promoters, which were assembled in a low-copy number plasmid and modulate the expression of sfgfp and mCherry reporter genes (csgBD-reporter plasmid). To access how the promoter mutations could affect the expression of each gene, we transformed the four libraries into the E. coli W3110 RpoS+ and cultivated it to the stationary phase. Reproducing the SortSeq technique, the cultures were analyzed by flow cytometry and sorted into four tubes according to their fluorescence for sfGFP, mCherry, sfGFP, and mCherry, and Negative (no expression for both reporters). Triplicates of this experiment were mini-prepped and deep-sequenced using Illumina platform. This new library design and SortSeq approach allowed us to better understand how each promoter region can affect the expression of both genes individually and at the same time, helping us to confirm or deny binding sites already predicted. We also found new possible binding sites for transcription factors not described yet, which were used for the prediction of new regulators to these promoters. This library gave us some insights into the logic involved in csgB bistability regulation. To expand the investigation of csgBA and csgD promoters we constructed a genomic library of the E. coli W3110 RpoS+ strain, using a barcoded-Tn5 plasmid. The Tn5 transposase present in the plasmid inserts randomly a unique barcode in a unique region of the genomic DNA. Then, we map the barcode to its corresponding genomic region, allowing the mutated site identification only by sequencing the barcode. We transformed our csgBD-reporter plasmid (without any library insertion) into it and used the SortSeq approach to sort the bacteria in the same four phenotypes and sequence the inserted barcode through the NGS technique. This second approach led to the identification of new players in the gene regulation of these important genes associated with biofilm formation. Combining these two types of libraries, we had new insights about the csgBA and csgD promoters\' regulation that will be tested and confirmed in the future.
id USP_908a2e32789804be5c6b8d18f9f041b3
oai_identifier_str oai:teses.usp.br:tde-08082023-144205
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic librariesAcessando a regulação transcricional da formação de biofilme em Escherichia coli utilizando bibliotecas genômica e de promotoresBiofilmBiofilmeEschericha coliEschericha coliGene expression regulationPromotersPromotoresRegulação da expressão gênicaSortSeqSortSeqBiofilms are complex structures formed by bacterial communities of the same or different species, embedded in an extracellular matrix composed of polymeric extracellular substances (EPS), such as polysaccharides, proteins (as curli structures), and nucleic acids. The regulatory networks of biofilm formation are composed of the integration of environmental and intracellular stimuli. One of its layers is transcriptional regulation, which is capable of drastically altering bacterial gene expression, converting it from a free-living style to a sessile behavior. To better understand how biofilm-related genes are regulated by different transcription factors, we aimed to apply the SortSeq technique to deeply investigate the architecture of central promoters of biofilm formation. We started this work with 21 promoters of interest, associated directly with biofilm formation and motility. A library containing these 21 promoters mutated randomly at a 10% rate was constructed and tested. The preliminary tests showed that this library had too many mutations and truncations per promoter sequence, and few promoter variants, making unfeasible the acquisition of results with it. This way, we decided to focus on two main promoters of genes for biofilm formation, related to curli synthesis: csgBAp, and csgDp. Their promoters are restricted to the same intergenic region between their genes and have a strict relation, once csgD is a master regulator of transcription of the csgBA operon. We divided this intergenic region into four parts and built libraries with region-focused random mutations. These four libraries were individually inserted into the original promoters, which were assembled in a low-copy number plasmid and modulate the expression of sfgfp and mCherry reporter genes (csgBD-reporter plasmid). To access how the promoter mutations could affect the expression of each gene, we transformed the four libraries into the E. coli W3110 RpoS+ and cultivated it to the stationary phase. Reproducing the SortSeq technique, the cultures were analyzed by flow cytometry and sorted into four tubes according to their fluorescence for sfGFP, mCherry, sfGFP, and mCherry, and Negative (no expression for both reporters). Triplicates of this experiment were mini-prepped and deep-sequenced using Illumina platform. This new library design and SortSeq approach allowed us to better understand how each promoter region can affect the expression of both genes individually and at the same time, helping us to confirm or deny binding sites already predicted. We also found new possible binding sites for transcription factors not described yet, which were used for the prediction of new regulators to these promoters. This library gave us some insights into the logic involved in csgB bistability regulation. To expand the investigation of csgBA and csgD promoters we constructed a genomic library of the E. coli W3110 RpoS+ strain, using a barcoded-Tn5 plasmid. The Tn5 transposase present in the plasmid inserts randomly a unique barcode in a unique region of the genomic DNA. Then, we map the barcode to its corresponding genomic region, allowing the mutated site identification only by sequencing the barcode. We transformed our csgBD-reporter plasmid (without any library insertion) into it and used the SortSeq approach to sort the bacteria in the same four phenotypes and sequence the inserted barcode through the NGS technique. This second approach led to the identification of new players in the gene regulation of these important genes associated with biofilm formation. Combining these two types of libraries, we had new insights about the csgBA and csgD promoters\' regulation that will be tested and confirmed in the future.Biofilmes são estruturas complexas formadas por comunidades bacterianas da mesma ou de espécies diferentes, embebidas em uma matriz extracelular composta por substâncias extracelulares poliméricas (EPS), como polissacarídeos, proteínas (como estruturas curli) e ácidos nucléicos. As redes reguladoras da formação do biofilme são compostas pela integração de estímulos ambientais e intracelulares. Uma de suas camadas é a regulação transcricional, que é capaz de alterar drasticamente a expressão gênica bacteriana, convertendo-a de um estilo de vida livre para um comportamento séssil. Para entender melhor como os genes relacionados ao biofilme são regulados por diferentes fatores de transcrição, decidimos aplicar a técnica de SortSeq para investigar a fundo a arquitetura de promotores centrais relacionados à formação de biofilme. Iniciamos este trabalho com 21 promotores, associados diretamente ao desenvolvimento do biofilme e motilidade bacteriana. Construímos e testamos uma biblioteca contendo esses 21 promotores mutados aleatoriamente a uma taxa de 10%. Os testes preliminares mostraram que esta biblioteca possuía muitas mutações e truncamentos das sequências promotoras, e poucas variantes, inviabilizando a aquisição de resultados com ela. Desta forma, decidimos focar em dois principais promotores de genes relacionados à síntese de curli: csgBAp e csgDp. Seus promotores estão restritos a uma mesma região intergênica e possuem uma relação estrita, uma vez que CsgD é um regulador mestre da transcrição do operon csgBA. Dividimos essa região intergênica em quatro partes e construímos bibliotecas com mutações focalizadas e aleatórias. Essas quatro bibliotecas foram inseridas individualmente nos promotores originais, os quais já haviam sido clonados em um plasmídeo de baixo número de cópias e modulam a expressão dos genes repórteres sfgfp e mCherry (plasmídeo csgBD-repórter). Para acessar como as mutações do promotor podem afetar a expressão de cada gene, transformamos as quatro bibliotecas na linhagem de E. coli W3110 RpoS+ e as cultivamos até a fase estacionária. Reproduzindo a técnica SortSeq, as culturas foram analisadas por citometria de fluxo e classificadas em quatro tubos de acordo com sua fluorescência para sfGFP, mCherry, sfGFP e mCherry, e negativo (sem expressão para ambos os repórteres). Triplicatas deste experimento tiveram seus plasmídeos extraídos e sequenciados usando a plataforma Illumina. Este novo design de biblioteca e abordagem SortSeq nos permitiu entender melhor como cada região promotora pode afetar a expressão de ambos os genes individual e conjuntamente, ajudando-nos a confirmar ou negar a atuação de sítios de ligação a fatores de transcrição já descritos. Também encontramos novos possíveis sítios de ligação para fatores de transcrição ainda não descritos, os quais foram utilizados para a predição de novos reguladores para esses promotores. Para expandir a investigação dos promotores csgBA e csgD construímos uma biblioteca genômica da cepa E. coli W3110 RpoS+, usando um plasmídeo contendo a transposase Tn5 e sequencias de DNA como código de barras. A transposase Tn5 presente no plasmídeo insere aleatoriamente um código de barras único em uma região única do DNA genômico. Em seguida, mapeamos o código de barras para sua região genômica correspondente, permitindo a identificação do sítio mutado apenas pelo sequenciamento do código de barras. Transformamos nosso plasmídeo csgBD-reporter (sem qualquer inserção de biblioteca) na biblioteca e usamos a abordagem SortSeq para dividir as bactérias nos mesmos quatro fenótipos e sequenciar o código de barras inserido por meio da técnica NGS. Esta segunda abordagem levou à identificação de novos atores na regulação gênica desses genes tão importantes associados à formação do biofilme. Combinando esses dois tipos de bibliotecas, descobrimos possíveis novas regulações dos promotores de csgBA e csgD que serão testados e confirmados futuramente.Biblioteca Digitais de Teses e Dissertações da USPGuazzaroni, María EugeniaMedeiros, Ananda Sanches2023-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17136/tde-08082023-144205/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2023-08-25T12:39:02Zoai:teses.usp.br:tde-08082023-144205Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-25T12:39:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
Acessando a regulação transcricional da formação de biofilme em Escherichia coli utilizando bibliotecas genômica e de promotores
title Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
spellingShingle Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
Medeiros, Ananda Sanches
Biofilm
Biofilme
Eschericha coli
Eschericha coli
Gene expression regulation
Promoters
Promotores
Regulação da expressão gênica
SortSeq
SortSeq
title_short Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
title_full Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
title_fullStr Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
title_full_unstemmed Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
title_sort Accessing transcriptional regulation of Escherichia coli biofilm formation using promoter and genomic libraries
author Medeiros, Ananda Sanches
author_facet Medeiros, Ananda Sanches
author_role author
dc.contributor.none.fl_str_mv Guazzaroni, María Eugenia
dc.contributor.author.fl_str_mv Medeiros, Ananda Sanches
dc.subject.por.fl_str_mv Biofilm
Biofilme
Eschericha coli
Eschericha coli
Gene expression regulation
Promoters
Promotores
Regulação da expressão gênica
SortSeq
SortSeq
topic Biofilm
Biofilme
Eschericha coli
Eschericha coli
Gene expression regulation
Promoters
Promotores
Regulação da expressão gênica
SortSeq
SortSeq
description Biofilms are complex structures formed by bacterial communities of the same or different species, embedded in an extracellular matrix composed of polymeric extracellular substances (EPS), such as polysaccharides, proteins (as curli structures), and nucleic acids. The regulatory networks of biofilm formation are composed of the integration of environmental and intracellular stimuli. One of its layers is transcriptional regulation, which is capable of drastically altering bacterial gene expression, converting it from a free-living style to a sessile behavior. To better understand how biofilm-related genes are regulated by different transcription factors, we aimed to apply the SortSeq technique to deeply investigate the architecture of central promoters of biofilm formation. We started this work with 21 promoters of interest, associated directly with biofilm formation and motility. A library containing these 21 promoters mutated randomly at a 10% rate was constructed and tested. The preliminary tests showed that this library had too many mutations and truncations per promoter sequence, and few promoter variants, making unfeasible the acquisition of results with it. This way, we decided to focus on two main promoters of genes for biofilm formation, related to curli synthesis: csgBAp, and csgDp. Their promoters are restricted to the same intergenic region between their genes and have a strict relation, once csgD is a master regulator of transcription of the csgBA operon. We divided this intergenic region into four parts and built libraries with region-focused random mutations. These four libraries were individually inserted into the original promoters, which were assembled in a low-copy number plasmid and modulate the expression of sfgfp and mCherry reporter genes (csgBD-reporter plasmid). To access how the promoter mutations could affect the expression of each gene, we transformed the four libraries into the E. coli W3110 RpoS+ and cultivated it to the stationary phase. Reproducing the SortSeq technique, the cultures were analyzed by flow cytometry and sorted into four tubes according to their fluorescence for sfGFP, mCherry, sfGFP, and mCherry, and Negative (no expression for both reporters). Triplicates of this experiment were mini-prepped and deep-sequenced using Illumina platform. This new library design and SortSeq approach allowed us to better understand how each promoter region can affect the expression of both genes individually and at the same time, helping us to confirm or deny binding sites already predicted. We also found new possible binding sites for transcription factors not described yet, which were used for the prediction of new regulators to these promoters. This library gave us some insights into the logic involved in csgB bistability regulation. To expand the investigation of csgBA and csgD promoters we constructed a genomic library of the E. coli W3110 RpoS+ strain, using a barcoded-Tn5 plasmid. The Tn5 transposase present in the plasmid inserts randomly a unique barcode in a unique region of the genomic DNA. Then, we map the barcode to its corresponding genomic region, allowing the mutated site identification only by sequencing the barcode. We transformed our csgBD-reporter plasmid (without any library insertion) into it and used the SortSeq approach to sort the bacteria in the same four phenotypes and sequence the inserted barcode through the NGS technique. This second approach led to the identification of new players in the gene regulation of these important genes associated with biofilm formation. Combining these two types of libraries, we had new insights about the csgBA and csgD promoters\' regulation that will be tested and confirmed in the future.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/17/17136/tde-08082023-144205/
url https://www.teses.usp.br/teses/disponiveis/17/17136/tde-08082023-144205/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257981103636480