Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Araujo, João Victor de Sousa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/85/85134/tde-19022025-161436/
Resumo: This study investigates how microstructure influences anodic film formation and corrosion resistance in high-strength aluminum alloys anodized in tartaric-sulfuric acid (TSA) at 14 V. The alloys studied include AA2024-T3 (Al-Cu-Mg), AA2198-T8/T851 (Al-Cu-Li), and AA7475-T761 (Al-Zn-Mg). Microstructural analyses were performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and scanning Kelvin probe force microscopy (SKPFM) to evaluate the morphology, size, density, and chemical composition of constituent intermetallic particles (IMPs) in these alloys. The AA2024-T3 alloy contains three main types of IMPsAl-Cu-Mg, Al-Cu-Fe-Mn, and Al-Cu-Fe-Mn-Si all with copper content exceeding 15 wt.%, classifying them as high-copper-containing particles. Similarly, the AA2198-T8/T851 alloys predominantly feature high-copper-content Al-Cu-Fe particles (> 15 wt.%). In contrast, the AA7475-T761 alloy has the lowest particle density, with IMPs exhibiting either high-coppercontent (> 27.5 wt.%) or low-copper-content (< 7 wt.%). The behaviour of these IMPs during anodizing was investigated using transmission electron microscopy (TEM), SEM-EDX, atomic force microscopy (AFM), and cross-sectional analysis of anodic films through ultramicrotomy and mechanical bending techniques. An inverse relationship was observed between the thickness of the anodic film and the current density measured during anodizing, with alloys containing higher densities of constituent IMPs exhibiting higher current densities but thinner anodic films. High-copper-containing particles dissolved rapidly during the initial stages of anodizing, forming micrometric cavities on the surface and within the anodic film. Conversely, Si-containing and low-copper-containing IMPs in the AA2024-T3 and AA7475-T761 alloys, respectively, showed a slower dissolution rate compared to the aluminum matrix, embedding them within the anodic film and creating highly porous regions above these particles. Corrosion resistance was further evaluated through immersion tests in chloride-containing solutions to assess the impact of defects induced by the dissolution of constituent IMPs. Optical microscopy, SEM-EDX, and ultramicrotomy enabled crosssectional analysis of corrosion sites, confirming that defects at the film/alloy interface, caused by dissolved high-copper-content IMPs, initiate localized corrosion by allowing electrolyte penetration that compromises the protective properties of the anodic film. In contrast, low-copper-content IMPs in the AA7475-T761 alloy resulted in fewer critical defects, thus contributing to relatively higher corrosion resistance. The study also highlights the importance of using appropriate techniques to analyse pitting corrosion in anodized aluminum alloys. Characterization techniques such as optical microscopy, SEM, profilometry, and cross-sectional analysis revealed significant variations in pit morphology and depth, indicating that surface-only observations may lead to misinterpretations. Accurate characterization through a combination of these methods is essential for a comprehensive understanding of pitting corrosion morphology and extent. These findings underscore the influence of constituent IMPs on the characteristics of anodic film formation and the defects they induce, directly impacting the corrosion resistance of anodized aluminum alloys. This insight is critical for advancing microstructural control and improving the anodizing process to optimize the performance of these materials.
id USP_96e545ad8dd3b92eb573ca8b34337297
oai_identifier_str oai:teses.usp.br:tde-19022025-161436
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloysInfluência da microestrutura na formação da camada anodizada e na resistência à corrosão de ligas de alumínio de alta resistênciaanodizaçãoanodizingcorrosãohigh-Strength Al alloysligas de Al de alta resistênciamicroestruturamicrostructurepit corrosionThis study investigates how microstructure influences anodic film formation and corrosion resistance in high-strength aluminum alloys anodized in tartaric-sulfuric acid (TSA) at 14 V. The alloys studied include AA2024-T3 (Al-Cu-Mg), AA2198-T8/T851 (Al-Cu-Li), and AA7475-T761 (Al-Zn-Mg). Microstructural analyses were performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and scanning Kelvin probe force microscopy (SKPFM) to evaluate the morphology, size, density, and chemical composition of constituent intermetallic particles (IMPs) in these alloys. The AA2024-T3 alloy contains three main types of IMPsAl-Cu-Mg, Al-Cu-Fe-Mn, and Al-Cu-Fe-Mn-Si all with copper content exceeding 15 wt.%, classifying them as high-copper-containing particles. Similarly, the AA2198-T8/T851 alloys predominantly feature high-copper-content Al-Cu-Fe particles (> 15 wt.%). In contrast, the AA7475-T761 alloy has the lowest particle density, with IMPs exhibiting either high-coppercontent (> 27.5 wt.%) or low-copper-content (< 7 wt.%). The behaviour of these IMPs during anodizing was investigated using transmission electron microscopy (TEM), SEM-EDX, atomic force microscopy (AFM), and cross-sectional analysis of anodic films through ultramicrotomy and mechanical bending techniques. An inverse relationship was observed between the thickness of the anodic film and the current density measured during anodizing, with alloys containing higher densities of constituent IMPs exhibiting higher current densities but thinner anodic films. High-copper-containing particles dissolved rapidly during the initial stages of anodizing, forming micrometric cavities on the surface and within the anodic film. Conversely, Si-containing and low-copper-containing IMPs in the AA2024-T3 and AA7475-T761 alloys, respectively, showed a slower dissolution rate compared to the aluminum matrix, embedding them within the anodic film and creating highly porous regions above these particles. Corrosion resistance was further evaluated through immersion tests in chloride-containing solutions to assess the impact of defects induced by the dissolution of constituent IMPs. Optical microscopy, SEM-EDX, and ultramicrotomy enabled crosssectional analysis of corrosion sites, confirming that defects at the film/alloy interface, caused by dissolved high-copper-content IMPs, initiate localized corrosion by allowing electrolyte penetration that compromises the protective properties of the anodic film. In contrast, low-copper-content IMPs in the AA7475-T761 alloy resulted in fewer critical defects, thus contributing to relatively higher corrosion resistance. The study also highlights the importance of using appropriate techniques to analyse pitting corrosion in anodized aluminum alloys. Characterization techniques such as optical microscopy, SEM, profilometry, and cross-sectional analysis revealed significant variations in pit morphology and depth, indicating that surface-only observations may lead to misinterpretations. Accurate characterization through a combination of these methods is essential for a comprehensive understanding of pitting corrosion morphology and extent. These findings underscore the influence of constituent IMPs on the characteristics of anodic film formation and the defects they induce, directly impacting the corrosion resistance of anodized aluminum alloys. This insight is critical for advancing microstructural control and improving the anodizing process to optimize the performance of these materials.Este estudo investiga o efeito da microestrutura na formação do filme anódico e na resistência à corrosão de ligas de alumínio de alta resistência anodizadas em ácido tartárico-sulfúrico (TSA) a 14 V. As ligas estudadas incluem AA2024-T3 (Al-Cu-Mg), AA2198-T8/T851 (Al-Cu-Li) e AA7475-T761 (Al-Mg-Zn). As análises microestruturais foram realizadas por meio de microscopia eletrônica de varredura com espectroscopia de energia dispersiva (SEM-EDX) e microscopia de força de sonda Kelvin (SKPFM), para avaliar a distribuição, morfologia, tamanho, densidade e composição química das partículas intermetálicas constituintes (IMPs) nessas ligas. A liga AA2024-T3 contém três tipos principais de IMPs: Al-Cu-Mg, AlCu-Fe-Mn e Al-Cu-Fe-Mn-Si, todas com teor de cobre superior a 15 wt. %, classificando-as como partículas com alto teor de cobre. De forma semelhante, as ligas AA2198-T8/T851 apresentam predominantemente partículas de Al-Cu-Fe, também com alto teor de cobre (> 15 wt. %). Em contraste, a liga AA7475-T761 apresenta a menor densidade de partículas, com IMPs que exibem alto teor de cobre (> 27.5 wt. %) ou baixo teor de cobre (< 7 wt. %). O comportamento dessas IMPs durante o processo de anodização foi investigado utilizando técnicas de microscopia eletrônica de transmissão (TEM), SEM-EDX, microscopia de força atômica (AFM) e análise de seções transversais dos filmes anódicos por meio de ultramicrotomia e flexão mecânica. Observou-se uma relação inversa entre a espessura do filme anódico e a densidade de corrente medida durante a anodização, onde ligas com maior densidade de IMPs apresentaram maiores densidades de corrente e filmes anódicos menos espessos. As partículas com alto teor de cobre dissolveram-se rapidamente nos estágios iniciais da anodização, criando cavidades micrométricas na superfície e dentro do filme anódico. Por outro lado, as partículas contendo silício e as com baixo teor de cobre nas ligas AA2024- T3 e AA7475-T761, respectivamente, apresentaram uma taxa de dissolução mais lenta em comparação à matriz de alumínio, resultando na formação de um filme anódico altamente poroso acima dessas IMPs. Adicionalmente, a influência dos defeitos induzidos pela dissolução dos IMPs sobre a resistência à corrosão das ligas anodizadas foi examinada por meio de testes de imersão em solução contendo cloreto, com observações subsequentes realizadas usando microscopia óptica, SEM-EDX e ultramicrotomia para análise de seções transversais dos locais de corrosão. Essas observações mostraram que os defeitos na interface filme/liga, formados pela dissolução de IMPs com alto teor de cobre, atuam como pontos de iniciação para corrosão localizada, facilitando a penetração do eletrólito corrosivo e comprometendo as propriedades protetoras do filme anódico. Em contraste, os IMPs com baixo teor de cobre na liga AA7475-T761 resultaram em defeitos menos críticos na interface filme/liga, contribuindo para uma resistência maior à corrosão. Finalmente, o estudo destaca a importância da seleção de técnicas apropriadas para a análise de corrosão por pites em ligas anodizadas. Técnicas de caracterização, como microscopia óptica, SEM, perfilometria e análise de seções transversais, revelaram variações significativas na morfologia e profundidade dos pites, indicando que observações de superfície podem ser enganosas. A caracterização precisa, utilizando uma combinação dessas metodologias, é essencial para uma compreensão abrangente da morfologia da corrosão por pites e sua real extensão. Os resultados apresentados destacam a influência das IMPs nas características de formação do filme anódico e nos defeitos que elas induzem, impactando diretamente a resistência à corrosão das ligas de alumínio anodizadas. Essas descobertas são fundamentais para o avanço no entendimento de como o controle microestrutural e ajustes no processo de anodização podem otimizar o desempenho desses materiais.Biblioteca Digitais de Teses e Dissertações da USPCosta, IsoldaAraujo, João Victor de Sousa2025-01-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/85/85134/tde-19022025-161436/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-02-19T19:49:02Zoai:teses.usp.br:tde-19022025-161436Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-02-19T19:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
Influência da microestrutura na formação da camada anodizada e na resistência à corrosão de ligas de alumínio de alta resistência
title Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
spellingShingle Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
Araujo, João Victor de Sousa
anodização
anodizing
corrosão
high-Strength Al alloys
ligas de Al de alta resistência
microestrutura
microstructure
pit corrosion
title_short Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
title_full Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
title_fullStr Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
title_full_unstemmed Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
title_sort Microstructural influence on anodic film formation and corrosion resistance in anodized high-strength aluminium alloys
author Araujo, João Victor de Sousa
author_facet Araujo, João Victor de Sousa
author_role author
dc.contributor.none.fl_str_mv Costa, Isolda
dc.contributor.author.fl_str_mv Araujo, João Victor de Sousa
dc.subject.por.fl_str_mv anodização
anodizing
corrosão
high-Strength Al alloys
ligas de Al de alta resistência
microestrutura
microstructure
pit corrosion
topic anodização
anodizing
corrosão
high-Strength Al alloys
ligas de Al de alta resistência
microestrutura
microstructure
pit corrosion
description This study investigates how microstructure influences anodic film formation and corrosion resistance in high-strength aluminum alloys anodized in tartaric-sulfuric acid (TSA) at 14 V. The alloys studied include AA2024-T3 (Al-Cu-Mg), AA2198-T8/T851 (Al-Cu-Li), and AA7475-T761 (Al-Zn-Mg). Microstructural analyses were performed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and scanning Kelvin probe force microscopy (SKPFM) to evaluate the morphology, size, density, and chemical composition of constituent intermetallic particles (IMPs) in these alloys. The AA2024-T3 alloy contains three main types of IMPsAl-Cu-Mg, Al-Cu-Fe-Mn, and Al-Cu-Fe-Mn-Si all with copper content exceeding 15 wt.%, classifying them as high-copper-containing particles. Similarly, the AA2198-T8/T851 alloys predominantly feature high-copper-content Al-Cu-Fe particles (> 15 wt.%). In contrast, the AA7475-T761 alloy has the lowest particle density, with IMPs exhibiting either high-coppercontent (> 27.5 wt.%) or low-copper-content (< 7 wt.%). The behaviour of these IMPs during anodizing was investigated using transmission electron microscopy (TEM), SEM-EDX, atomic force microscopy (AFM), and cross-sectional analysis of anodic films through ultramicrotomy and mechanical bending techniques. An inverse relationship was observed between the thickness of the anodic film and the current density measured during anodizing, with alloys containing higher densities of constituent IMPs exhibiting higher current densities but thinner anodic films. High-copper-containing particles dissolved rapidly during the initial stages of anodizing, forming micrometric cavities on the surface and within the anodic film. Conversely, Si-containing and low-copper-containing IMPs in the AA2024-T3 and AA7475-T761 alloys, respectively, showed a slower dissolution rate compared to the aluminum matrix, embedding them within the anodic film and creating highly porous regions above these particles. Corrosion resistance was further evaluated through immersion tests in chloride-containing solutions to assess the impact of defects induced by the dissolution of constituent IMPs. Optical microscopy, SEM-EDX, and ultramicrotomy enabled crosssectional analysis of corrosion sites, confirming that defects at the film/alloy interface, caused by dissolved high-copper-content IMPs, initiate localized corrosion by allowing electrolyte penetration that compromises the protective properties of the anodic film. In contrast, low-copper-content IMPs in the AA7475-T761 alloy resulted in fewer critical defects, thus contributing to relatively higher corrosion resistance. The study also highlights the importance of using appropriate techniques to analyse pitting corrosion in anodized aluminum alloys. Characterization techniques such as optical microscopy, SEM, profilometry, and cross-sectional analysis revealed significant variations in pit morphology and depth, indicating that surface-only observations may lead to misinterpretations. Accurate characterization through a combination of these methods is essential for a comprehensive understanding of pitting corrosion morphology and extent. These findings underscore the influence of constituent IMPs on the characteristics of anodic film formation and the defects they induce, directly impacting the corrosion resistance of anodized aluminum alloys. This insight is critical for advancing microstructural control and improving the anodizing process to optimize the performance of these materials.
publishDate 2025
dc.date.none.fl_str_mv 2025-01-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/85/85134/tde-19022025-161436/
url https://www.teses.usp.br/teses/disponiveis/85/85134/tde-19022025-161436/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839150137671680