Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-154009/ |
Resumo: | Recommender systems use information about the users preferences to define scores of interests towards items. Regardless of the method, a noticeable problem is that the system is required to compute scores for a large amount of unknown items in the database, even though these items may not be related to a determined user. Besides that, traditional problems, such as sparsity, high dimensionality and cold-start make the prediction task even more difficult. Currently, several works try to deal with these problems, using solutions within the recommendation algorithm itself, which increases the time and computational cost of them. In this doctoral thesis, we propose many pre-processing techniques for recommender systems that reduce and/or enrich the number of unknown user-item pairs the recommender must process to obtain a dataset with more reliable and robust information. Our approaches focus on users feedback, trying to extract tastes and behaviors from each user from the information available in the datasets. We assess the quality of these approaches by applying them into some well-known RS and comparing the results against the same recommenders without our pre-processing step, as well as against other related baselines and state-of-art works. Results show a significant improvement in the accuracy of the recommenders and the reduction of the impact of the traditional recommendation problems. |
| id |
USP_97a508b1081e3c29b7c11447e713b35c |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04022020-154009 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedbackOtimização dos sistemas de recomendação por enriquecimento com abordagens de pré-processamento baseadas em feedback de usuáriosAbordagens de pré-processamentoCold-startDimensionalidadeDimensionalityEsparsidadeInterações de usuáriosPartida friaPre-processing approachesRecommender systemsSistemas de recomendaçãoSparsityUsers' feedbackRecommender systems use information about the users preferences to define scores of interests towards items. Regardless of the method, a noticeable problem is that the system is required to compute scores for a large amount of unknown items in the database, even though these items may not be related to a determined user. Besides that, traditional problems, such as sparsity, high dimensionality and cold-start make the prediction task even more difficult. Currently, several works try to deal with these problems, using solutions within the recommendation algorithm itself, which increases the time and computational cost of them. In this doctoral thesis, we propose many pre-processing techniques for recommender systems that reduce and/or enrich the number of unknown user-item pairs the recommender must process to obtain a dataset with more reliable and robust information. Our approaches focus on users feedback, trying to extract tastes and behaviors from each user from the information available in the datasets. We assess the quality of these approaches by applying them into some well-known RS and comparing the results against the same recommenders without our pre-processing step, as well as against other related baselines and state-of-art works. Results show a significant improvement in the accuracy of the recommenders and the reduction of the impact of the traditional recommendation problems.Sistemas de recomendação utilizam informações sobre preferências de usuários para inferir o seu gosto em relação a novos itens. Um grande problema nessa área é o número de informações que os algoritmos precisam para calcular pontuações para uma grande quantidade de itens desconhecidos no banco de dados. Além disso, problemas tradicionais como esparsidade, alta dimensionalidade e partida fria, dificultam ainda mais a tarefa de predição desses algoritmos. Atualmente, vários trabalhos tentam lidar com esses problemas, utilizando soluções dentro do próprio algoritmo de recomendação, o que aumenta o tempo e o custo computacional dos algoritmos utilizados nessa tarefa. Nesta tese de doutorado, propomos abordagens de préprocessamento de dados para sistemas de recomendação que reduzem e/ou enriquecem o número de pares usuário-item desconhecidos que o recomendador deve processar para obter um conjunto de dados com informações mais confiáveis e robustas. Nossas abordagens concentram-se no feedback de usuários, tentando extrair os gostos e comportamentos de cada um usando informações disponíveis nos conjuntos de dados. Avaliamos a qualidade dessas abordagens aplicando-as em algoritmos de recomendação tradicionais e conhecidos na literatura, além de comparar os resultados com os mesmos recomendadores sem a etapa de pré-processamento e com outros algoritmos do estado da arte. Os resultados mostram uma melhora significativa na acurácia dos recomendadores tradicionais e na redução do impacto de problemas conhecidos na área de recomendação.Biblioteca Digitais de Teses e Dissertações da USPCampello, Ricardo José Gabrielli BarretoManzato, Marcelo GarciaCosta, Arthur Fortes da2019-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-154009/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-02-04T20:47:02Zoai:teses.usp.br:tde-04022020-154009Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-04T20:47:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback Otimização dos sistemas de recomendação por enriquecimento com abordagens de pré-processamento baseadas em feedback de usuários |
| title |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| spellingShingle |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback Costa, Arthur Fortes da Abordagens de pré-processamento Cold-start Dimensionalidade Dimensionality Esparsidade Interações de usuários Partida fria Pre-processing approaches Recommender systems Sistemas de recomendação Sparsity Users' feedback |
| title_short |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| title_full |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| title_fullStr |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| title_full_unstemmed |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| title_sort |
Enhancing recommender systems by enrichment with pre- processing approaches supported by users\' feedback |
| author |
Costa, Arthur Fortes da |
| author_facet |
Costa, Arthur Fortes da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Campello, Ricardo José Gabrielli Barreto Manzato, Marcelo Garcia |
| dc.contributor.author.fl_str_mv |
Costa, Arthur Fortes da |
| dc.subject.por.fl_str_mv |
Abordagens de pré-processamento Cold-start Dimensionalidade Dimensionality Esparsidade Interações de usuários Partida fria Pre-processing approaches Recommender systems Sistemas de recomendação Sparsity Users' feedback |
| topic |
Abordagens de pré-processamento Cold-start Dimensionalidade Dimensionality Esparsidade Interações de usuários Partida fria Pre-processing approaches Recommender systems Sistemas de recomendação Sparsity Users' feedback |
| description |
Recommender systems use information about the users preferences to define scores of interests towards items. Regardless of the method, a noticeable problem is that the system is required to compute scores for a large amount of unknown items in the database, even though these items may not be related to a determined user. Besides that, traditional problems, such as sparsity, high dimensionality and cold-start make the prediction task even more difficult. Currently, several works try to deal with these problems, using solutions within the recommendation algorithm itself, which increases the time and computational cost of them. In this doctoral thesis, we propose many pre-processing techniques for recommender systems that reduce and/or enrich the number of unknown user-item pairs the recommender must process to obtain a dataset with more reliable and robust information. Our approaches focus on users feedback, trying to extract tastes and behaviors from each user from the information available in the datasets. We assess the quality of these approaches by applying them into some well-known RS and comparing the results against the same recommenders without our pre-processing step, as well as against other related baselines and state-of-art works. Results show a significant improvement in the accuracy of the recommenders and the reduction of the impact of the traditional recommendation problems. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-11-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-154009/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-04022020-154009/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257844549681152 |