Digital mapping of soil attributes and functions: from farm to global scale
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/ |
Resumo: | Producing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas. |
| id |
USP_985cebfcb68b2f43cfda3004a8c9f086 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-05112025-103640 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Digital mapping of soil attributes and functions: from farm to global scaleMapeamento digital dos atributos e funções do solo: da fazenda à escala globalFluorescência de raios XPedometriaPedometricsRemote sensingSaúde do soloSegurança do soloSensoriamento remotoSoil healthSoil securityX-ray fluorescenceProducing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas.Produzir informações de solo altamente detalhadas e acuradas no espaço e no tempo é crucial para o bem-estar humano. Desta forma, a presente tese foi dividida em quatro capítulos que objetivaram 1) Utilizar informações de fluorescência de raios X (FRX) para gerar mapas, usando dados de sensoriamento remoto, obtendo-se dados espaciais valiosos de elementos químicos do solo; 2) Testar três estratégias para mapeamento espaço-temporal de estoques de carbono orgânico do solo (COS) em escala de fazenda: a) um modelo para cada ano, b) um modelo ajustado usando apenas os dados de um ano e c) um modelo multitemporal; 3) Realizar um mapeamento espaço-temporal do estoque de COS em alta resolução (30 m) e avaliar mudanças nos estoques de COS em diferentes profundidades do solo no território brasileiro, por biomas, estados e uso da terra; 4) Avaliar a relação entre produtividade agrícola e atributos do solo (em camadas superficiais e no subsolo) nos biomas do mundo e mapear a capacidade do solo de produzir alimentos e biomassa em todo o mundo usando o framework de avaliação da segurança do solo (SSAF). Para alcançar o primeiro objetivo, medimos as concentrações totais de elementos químicos chave no solo, como Al, Si, Ti e Fe, usando FRX. Esses dados foram então espacializados por mapeamento digital de solos (MDS). Os mapas de elementos derivados do FRX se alinharam bem com os mapas pedológicos e geológicos existentes. O uso de dados de FRX espacializados com DSM e técnicas de sensoriamento remoto mostra-se significativamente promissora na avaliação de variações do solo. Para alcançar o segundo objetivo, propusemos um mapeamento 4D do estoque COS, abrangendo o espaço (duas dimensões), além de dimensões de profundidade e tempo. Uma amostragem em grid m 1997 e 2022 foi conduzida em uma fazenda. Covariáveis dinâmicas e estáticas, foram usadas para ajustar modelos Cubist para testar as estratégias propostas. As estratégias 1 e 3 produziram mapas mais precisos e menos tendenciosos, enquanto a estratégia 2 não foi tão eficiente. Para atingir o objetivo 3, utilizamos uma combinação de covariáveis ambientais, estáticas e dinâmicas, juntamente com mais de 50.000 pontos, obtendo um mapeamento de estoque de COS com resolução de 30 metros para o Brasil. A mudança no uso da terra, de floresta para uso antrópico, foi o principal fator determinante da perda de estoque de COS, enquanto a conversão de pastagens para agricultura geralmente levou a ganhos. Para atingir o objetivo 4, os dados de produtividade de cana-de-açúcar, milho, arroz, trigo e soja foram utilizados como indicadores alvo, enquanto a argila, o pH, o COS e a água disponível para as plantas foram utilizados como indicadores potenciais no SSAF. Obtivemos funções de utilidade para cada ecorregião do mundo, relacionando a produtividade com os atributos do solo. Os mapas de utilidade finais foram previstos usando MDS, produzindo mapas com resolução de 90 m e extrapolando essa informação para áreas atualmente não agrícolas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloRosin, Nícolas Augusto2025-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-11-06T18:02:02Zoai:teses.usp.br:tde-05112025-103640Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-11-06T18:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Digital mapping of soil attributes and functions: from farm to global scale Mapeamento digital dos atributos e funções do solo: da fazenda à escala global |
| title |
Digital mapping of soil attributes and functions: from farm to global scale |
| spellingShingle |
Digital mapping of soil attributes and functions: from farm to global scale Rosin, Nícolas Augusto Fluorescência de raios X Pedometria Pedometrics Remote sensing Saúde do solo Segurança do solo Sensoriamento remoto Soil health Soil security X-ray fluorescence |
| title_short |
Digital mapping of soil attributes and functions: from farm to global scale |
| title_full |
Digital mapping of soil attributes and functions: from farm to global scale |
| title_fullStr |
Digital mapping of soil attributes and functions: from farm to global scale |
| title_full_unstemmed |
Digital mapping of soil attributes and functions: from farm to global scale |
| title_sort |
Digital mapping of soil attributes and functions: from farm to global scale |
| author |
Rosin, Nícolas Augusto |
| author_facet |
Rosin, Nícolas Augusto |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
| dc.contributor.author.fl_str_mv |
Rosin, Nícolas Augusto |
| dc.subject.por.fl_str_mv |
Fluorescência de raios X Pedometria Pedometrics Remote sensing Saúde do solo Segurança do solo Sensoriamento remoto Soil health Soil security X-ray fluorescence |
| topic |
Fluorescência de raios X Pedometria Pedometrics Remote sensing Saúde do solo Segurança do solo Sensoriamento remoto Soil health Soil security X-ray fluorescence |
| description |
Producing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370471144259584 |