Digital mapping of soil attributes and functions: from farm to global scale

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Rosin, Nícolas Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/
Resumo: Producing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas.
id USP_985cebfcb68b2f43cfda3004a8c9f086
oai_identifier_str oai:teses.usp.br:tde-05112025-103640
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Digital mapping of soil attributes and functions: from farm to global scaleMapeamento digital dos atributos e funções do solo: da fazenda à escala globalFluorescência de raios XPedometriaPedometricsRemote sensingSaúde do soloSegurança do soloSensoriamento remotoSoil healthSoil securityX-ray fluorescenceProducing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas.Produzir informações de solo altamente detalhadas e acuradas no espaço e no tempo é crucial para o bem-estar humano. Desta forma, a presente tese foi dividida em quatro capítulos que objetivaram 1) Utilizar informações de fluorescência de raios X (FRX) para gerar mapas, usando dados de sensoriamento remoto, obtendo-se dados espaciais valiosos de elementos químicos do solo; 2) Testar três estratégias para mapeamento espaço-temporal de estoques de carbono orgânico do solo (COS) em escala de fazenda: a) um modelo para cada ano, b) um modelo ajustado usando apenas os dados de um ano e c) um modelo multitemporal; 3) Realizar um mapeamento espaço-temporal do estoque de COS em alta resolução (30 m) e avaliar mudanças nos estoques de COS em diferentes profundidades do solo no território brasileiro, por biomas, estados e uso da terra; 4) Avaliar a relação entre produtividade agrícola e atributos do solo (em camadas superficiais e no subsolo) nos biomas do mundo e mapear a capacidade do solo de produzir alimentos e biomassa em todo o mundo usando o framework de avaliação da segurança do solo (SSAF). Para alcançar o primeiro objetivo, medimos as concentrações totais de elementos químicos chave no solo, como Al, Si, Ti e Fe, usando FRX. Esses dados foram então espacializados por mapeamento digital de solos (MDS). Os mapas de elementos derivados do FRX se alinharam bem com os mapas pedológicos e geológicos existentes. O uso de dados de FRX espacializados com DSM e técnicas de sensoriamento remoto mostra-se significativamente promissora na avaliação de variações do solo. Para alcançar o segundo objetivo, propusemos um mapeamento 4D do estoque COS, abrangendo o espaço (duas dimensões), além de dimensões de profundidade e tempo. Uma amostragem em grid m 1997 e 2022 foi conduzida em uma fazenda. Covariáveis dinâmicas e estáticas, foram usadas para ajustar modelos Cubist para testar as estratégias propostas. As estratégias 1 e 3 produziram mapas mais precisos e menos tendenciosos, enquanto a estratégia 2 não foi tão eficiente. Para atingir o objetivo 3, utilizamos uma combinação de covariáveis ambientais, estáticas e dinâmicas, juntamente com mais de 50.000 pontos, obtendo um mapeamento de estoque de COS com resolução de 30 metros para o Brasil. A mudança no uso da terra, de floresta para uso antrópico, foi o principal fator determinante da perda de estoque de COS, enquanto a conversão de pastagens para agricultura geralmente levou a ganhos. Para atingir o objetivo 4, os dados de produtividade de cana-de-açúcar, milho, arroz, trigo e soja foram utilizados como indicadores alvo, enquanto a argila, o pH, o COS e a água disponível para as plantas foram utilizados como indicadores potenciais no SSAF. Obtivemos funções de utilidade para cada ecorregião do mundo, relacionando a produtividade com os atributos do solo. Os mapas de utilidade finais foram previstos usando MDS, produzindo mapas com resolução de 90 m e extrapolando essa informação para áreas atualmente não agrícolas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloRosin, Nícolas Augusto2025-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-11-06T18:02:02Zoai:teses.usp.br:tde-05112025-103640Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-11-06T18:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Digital mapping of soil attributes and functions: from farm to global scale
Mapeamento digital dos atributos e funções do solo: da fazenda à escala global
title Digital mapping of soil attributes and functions: from farm to global scale
spellingShingle Digital mapping of soil attributes and functions: from farm to global scale
Rosin, Nícolas Augusto
Fluorescência de raios X
Pedometria
Pedometrics
Remote sensing
Saúde do solo
Segurança do solo
Sensoriamento remoto
Soil health
Soil security
X-ray fluorescence
title_short Digital mapping of soil attributes and functions: from farm to global scale
title_full Digital mapping of soil attributes and functions: from farm to global scale
title_fullStr Digital mapping of soil attributes and functions: from farm to global scale
title_full_unstemmed Digital mapping of soil attributes and functions: from farm to global scale
title_sort Digital mapping of soil attributes and functions: from farm to global scale
author Rosin, Nícolas Augusto
author_facet Rosin, Nícolas Augusto
author_role author
dc.contributor.none.fl_str_mv Dematte, Jose Alexandre Melo
dc.contributor.author.fl_str_mv Rosin, Nícolas Augusto
dc.subject.por.fl_str_mv Fluorescência de raios X
Pedometria
Pedometrics
Remote sensing
Saúde do solo
Segurança do solo
Sensoriamento remoto
Soil health
Soil security
X-ray fluorescence
topic Fluorescência de raios X
Pedometria
Pedometrics
Remote sensing
Saúde do solo
Segurança do solo
Sensoriamento remoto
Soil health
Soil security
X-ray fluorescence
description Producing highly detailed and accurate soil information in space and time are crucial for human well-being. In this way, the present thesis was divided into four chapters that aimed 1) To use soil point X-ray fluorescence (XRF) information to generate maps using remote sensing data to obtain valuable soil chemical element spatial data; 2) To test three strategies for soil organic carbon (SOC) stock spatial-temporal mapping at farm scale: a) a model for each year, b) a model fitted using only the data of one year and c) a multitemporal model; 3) To perform a high-resolution (30 m) spatial-temporal SOC stock mapping and evaluate changes in SOC stocks at different soil depths in the Brazilian territory, by biomes, states, and land use; 4) To assess the relationship between crop yield and soil attributes (in surface and subsoil layers) across the worlds ecoregions and to map the soil capacity to produce food and biomass worldwide using the soil security assessment framework (SSAF). To reach the first aim we measured the total concentrations of key chemical elements in the soil, such as Al, Si, Ti, and Fe using XRF. These data were then spatialized by digital soil mapping (DSM). The maps of XRF elements aligned well with existing pedological, and geological maps. The integration of spatialized XRF data with DSM and remote sensing techniques shows significant promise in assessing soil variations. To achieve the second aim, we proposed a 4D SOC stock mapping, comprehending space (two dimensions), plus depth and time dimensions. A grid sampling in 1997 and 2022 was conducted in a farm. Dynamic and static covariates, representing the soil formations were used to fit Cubist models to test the strategies. The strategy 1 and 3 produced more accurate and less biased maps, while the strategy 2 was not so efficient. To reach the aim 3, we utilized a combination of static and dynamic environmental covariates along with more than 50,000 observation points, achieving a SOC stock mapping at 30 meters resolution for Brazil. Over the 40 years, we have estimated an absolute gain of 0.80 Pg C in Brazil. Land use change from forest to anthropized uses was the primary drivers of SOC stock loss, whereas the conversion from pastures to croplands generally led to SOC gains. To reach the aim 4, the yield data of sugarcane, maize, rice, wheat and soybean were used as target indicator, while the clay, pH, SOC and plant available water were used as potential indicators in the SSAF. We obtained utility functions for each world ecoregion relating the yields with soil attributes. The final utility maps were predicted using DSM and allowed to downscale this information to 90 m and extrapolated the utility information for currently non-agricultural areas.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/
url https://www.teses.usp.br/teses/disponiveis/11/11140/tde-05112025-103640/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370471144259584