Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rocha, Everton Batista da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-144057/
Resumo: Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho.
id USP_988595dc0e9e9a9fff09dc9059cb75ae
oai_identifier_str oai:teses.usp.br:tde-05112015-144057
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLAModels for data analysis of longitudinal counts with overdispersion: INLA estimationAnálise de dados longitudinaisBayesian inferenceContagensCountsInferência BayesianaLongitudinal data analysisOverdispersionSuperdispersãoEm ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho.Discrete and longitudinal structures naturally arise in clinical trial data. Such data are usually correlated, particularly when the observations are made within the same experimental unit over time and, thus, statistical analyses must take this situation into account. Besides this typical correlation, overdispersion is another common phenomenon in discrete data, defined as a greater observed variability than that nominated by the statistical model. The causes of overdispersion are usually related to an excess of observed zeros (zero-ination), or an excess of observed positive specific values or even both. Molenberghs, Verbeke e Demétrio (2007) have developed a class of models that encompasses both overdispersion and correlation in count data: Poisson, Poisson-gama, Poisson-normal, Poissonnormal- gama (combined model) models. A Bayesian approach was presented by Rizzato (2011) to fit these models using the Markov Chain Monte Carlo method (MCMC). In this work, a Bayesian framework was adopted as well and, in order to consider the uncertainty related to the model parameters, the Integrated Nested Laplace Approximations (INLA) method was used. Along with the models considered in Rizzato (2011), another four new models were proposed including longitudinal correlation, overdispersion and zero-ination by structural and random zeros, namely: zero-inated Poisson (ZIP), zero-inated negative binomial (ZINB), zero-inated Poisson-normal (ZIP-normal) and the zero-inated negative binomial-normal (ZINB-normal) models. In order to illustrate the developed methodology, the models were fit to a real dataset, in which the response variable was taken to be the number of epileptic events per week in each individual. These individuals were split into two groups, one taking placebo and the other taking an experimental drug, and they observed up to 27 weeks. The model selection criteria were given by different predictive measures based on cross validation. In this setting, the ZIP-normal model was selected instead the usual model in the literature (combined model). The computational routines were implemented in R language and constitute a part of this work.Biblioteca Digitais de Teses e Dissertações da USPLeandro, Roseli AparecidaRibeiro Junior, Paulo JustinianoRocha, Everton Batista da2015-09-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-144057/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:58Zoai:teses.usp.br:tde-05112015-144057Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
Models for data analysis of longitudinal counts with overdispersion: INLA estimation
title Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
spellingShingle Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
Rocha, Everton Batista da
Análise de dados longitudinais
Bayesian inference
Contagens
Counts
Inferência Bayesiana
Longitudinal data analysis
Overdispersion
Superdispersão
title_short Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
title_full Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
title_fullStr Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
title_full_unstemmed Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
title_sort Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA
author Rocha, Everton Batista da
author_facet Rocha, Everton Batista da
author_role author
dc.contributor.none.fl_str_mv Leandro, Roseli Aparecida
Ribeiro Junior, Paulo Justiniano
dc.contributor.author.fl_str_mv Rocha, Everton Batista da
dc.subject.por.fl_str_mv Análise de dados longitudinais
Bayesian inference
Contagens
Counts
Inferência Bayesiana
Longitudinal data analysis
Overdispersion
Superdispersão
topic Análise de dados longitudinais
Bayesian inference
Contagens
Counts
Inferência Bayesiana
Longitudinal data analysis
Overdispersion
Superdispersão
description Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-144057/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-144057/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257928600387584