Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Taheri, Seyed Iman
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3143/tde-17092021-104358/
Resumo: Integrating distributed energy resources (DERs), specifically renewable distributed generation (DG), in the distribution system leads to energy management problems. These problems for electric utilities are varied based on different former improvements in distribution systems and their requirements. Therefore, this thesis presents different energy management scenarios and solutions for covering a wide range of optimization problems in the distribution systems related to integrating DERs.All these scenarios are in one direction under the \'placement of DER in the distribution system.\' This thesis analyses the strategies, including four energy management optimization problems. The first and second scenarios are the single objective and multiobjective placement of DER in the distribution system. The thesis improves the first two scenarios by a multiobjective placement and sizing by considering the distribution system hosting capacity and the former installed DER (i.e., third scenario). Finally, the fourth scenario presents the optimal dispatching of DERs and microgrids for virtual power plant (VPP) Scheduling. These scenarios include the allocation of DG, such as fuel cells, wind turbines, and solar cells, in a distribution system to guide future energy management. In these scenarios, the applied optimization algorithms are the improved teaching-learningbased optimization (TLBO) algorithm with presenting two new modifications and two new hybrid optimization algorithms. The first and second scenarios use further modifications of TLBO for DER placement in the single objective and multiobjective problems. The third scenario applies a hybrid optimization algorithm combining TLBO and honey bee mating optimization (HBMO) algorithm. The hybrid algorithm of the fourth scenario is a combination of grid search algorithm and derivative-free optimization algorithm. TLBO, HBMO, grid search, and derivative-free optimization algorithms have been reported as the best optimization algorithms in this area. Thus, this thesis, by modifying and combining those algorithms, tries to design a better optimization algorithm matched to each scenario. Moreover, an IEEE standard distribution system, a 70-bus radial distribution system, is used to implement the proposed optimization algorithms based on the power system manager scenario and objective functions. The results show the importance of the proposed algorithms to optimize objective functions. The proposed algorithms observed superiority presents the best accuracy and velocity in achieving the optimal solution among the other optimization algorithms tested. The proposed algorithms are new optimization algorithms obtained by modifying the original version of the TLBO or combine two optimization algorithms. TLBO modification is in teacher and learner phases with adding the proper optimization techniques such as quasi-opposition-based learning technique and mutation method. With the best optimal solutions, the electric utility can have an economic, technical, and environmental improvement in the power system by DERs integrations. Besides, prosumers can have full benefits from renewable generators.
id USP_9a318b25b394a25d9f20f1185b4b5af7
oai_identifier_str oai:teses.usp.br:tde-17092021-104358
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.Estratégias de otimização para tomadores de decisão para aumentar a penetração dos recursos energéticos distribuídos por um futuro mais verde.Algoritmos de otimizaçãoDistributed energy resourcesDistributed GenerationDistribution networkEnergia (Gerenciamento)Energy managementMultiobjectiveOptimization algorithmRecursos energéticosRedes de distribuição de energia elétricaSingle objectiveIntegrating distributed energy resources (DERs), specifically renewable distributed generation (DG), in the distribution system leads to energy management problems. These problems for electric utilities are varied based on different former improvements in distribution systems and their requirements. Therefore, this thesis presents different energy management scenarios and solutions for covering a wide range of optimization problems in the distribution systems related to integrating DERs.All these scenarios are in one direction under the \'placement of DER in the distribution system.\' This thesis analyses the strategies, including four energy management optimization problems. The first and second scenarios are the single objective and multiobjective placement of DER in the distribution system. The thesis improves the first two scenarios by a multiobjective placement and sizing by considering the distribution system hosting capacity and the former installed DER (i.e., third scenario). Finally, the fourth scenario presents the optimal dispatching of DERs and microgrids for virtual power plant (VPP) Scheduling. These scenarios include the allocation of DG, such as fuel cells, wind turbines, and solar cells, in a distribution system to guide future energy management. In these scenarios, the applied optimization algorithms are the improved teaching-learningbased optimization (TLBO) algorithm with presenting two new modifications and two new hybrid optimization algorithms. The first and second scenarios use further modifications of TLBO for DER placement in the single objective and multiobjective problems. The third scenario applies a hybrid optimization algorithm combining TLBO and honey bee mating optimization (HBMO) algorithm. The hybrid algorithm of the fourth scenario is a combination of grid search algorithm and derivative-free optimization algorithm. TLBO, HBMO, grid search, and derivative-free optimization algorithms have been reported as the best optimization algorithms in this area. Thus, this thesis, by modifying and combining those algorithms, tries to design a better optimization algorithm matched to each scenario. Moreover, an IEEE standard distribution system, a 70-bus radial distribution system, is used to implement the proposed optimization algorithms based on the power system manager scenario and objective functions. The results show the importance of the proposed algorithms to optimize objective functions. The proposed algorithms observed superiority presents the best accuracy and velocity in achieving the optimal solution among the other optimization algorithms tested. The proposed algorithms are new optimization algorithms obtained by modifying the original version of the TLBO or combine two optimization algorithms. TLBO modification is in teacher and learner phases with adding the proper optimization techniques such as quasi-opposition-based learning technique and mutation method. With the best optimal solutions, the electric utility can have an economic, technical, and environmental improvement in the power system by DERs integrations. Besides, prosumers can have full benefits from renewable generators.Integrar recursos energéticos distribuídos (REDs), especificamente geração distribuída (GD), no sistema de distribuição resulta em problemas de gestão de energia. Para cada concessionária de energia elétrica esses problemas são diferentes, são base em melhorias realizadas anteriormente nos sistemas de distribuição e em seus requisitos. Portanto, esta tese apresenta diferentes cenários de gestão de energia e soluções para uma ampla gama de problemas de otimização nos sistemas de distribuição com à integração de REDs. Todos esses cenários consideram a alocação de RED no sistema de distribuição. Esta tese analisa as estratégias, incluindo quatro problemas de otimização de gestão de energia. O primeiro e o segundo cenários são a alocação de objetivo único e multiobjetivo de RED no sistema de distribuição. A tese contribui com os dois primeiros cenários por uma alocação e dimensionamento multiobjetivo, considerando a capacidade de hospedagem do sistema de distribuição e o RED instalado anterior (ou seja, terceiro cenário). Finalmente, o quarto cenário apresenta o despacho ótimo de REDs e microrredes para o escalonamento de usinas virtuais de energia (do inglês Virtual Power Plant - VPP). Esses cenários incluem a alocação de GD, como células a combustível, turbinas eólicas e módulos solares, em um sistema de distribuição para orientar a gestão de energia no futuro. Nestes cenários, os algoritmos de otimização aplicados são o algoritmo aprimorado teaching-learning-based optimization (TLBO) com a apresentação de duas novas modificações e dois novos algoritmos de otimização híbrida. O primeiro e o segundo cenários usam modificações adicionais de TLBO para a colocação de DER nos problemas de objetivo único e multiobjetivo. O terceiro cenário aplica um algoritmo de otimização híbrido combinando o algoritmo TLBO e honey bee mating optimization (HBMO). O algoritmo híbrido do quarto cenário é uma combinação dos algoritmos grid search algorithm e derivative-free optimization algorithm. Os algoritmos TLBO, HBMO, grid search algorithm e derivative-free optimization algorithm foram relatados como os melhores algoritmos de otimização nesta área. Assim, esta tese, ao modificar e combinar esses algoritmos, tenta projetar um algoritmo de otimização mais adequado a cada cenário. Além disso, um sistema II de distribuição padrão IEEE, com distribuição radial de 70 barras, é usado para implementar os algoritmos de otimização propostos com base no cenário do gerenciador do sistema de potência e funções objetivo. Os resultados mostram a importância dos algoritmos propostos para otimizar funções objetivo. A superioridade observada dos algoritmos propostos apresenta a melhor acurácia e velocidade na obtenção da solução ótima entre os demais algoritmos de otimização testados. Os algoritmos propostos são novos algoritmos de otimização que modificam a versão antiga do algoritmo de otimização ou combinam dois algoritmos de otimização. Os algoritmos propostos são novos algoritmos de otimização obtidos modificando a versão original do TLBO ou combinando dois algoritmos de otimização. A modificação do TLBO está nas fases de professor e aluno com a adição de técnicas de otimização adequadas, como técnica de aprendizagem baseada em quase oposição e método de mutação. Com soluções otimizadas, a concessionária de energia elétrica pode ter uma melhoria econômica, técnica e ambiental no sistema de potência por meio da integração dos REDs. Além disso, os prossumidores (clientes que são produtores e consumidores) podem ter todos os benefícios dos geradores renováveis.Biblioteca Digitais de Teses e Dissertações da USPSalles, Maurício Barbosa de CamargoTaheri, Seyed Iman2021-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3143/tde-17092021-104358/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-20T12:23:03Zoai:teses.usp.br:tde-17092021-104358Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-20T12:23:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
Estratégias de otimização para tomadores de decisão para aumentar a penetração dos recursos energéticos distribuídos por um futuro mais verde.
title Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
spellingShingle Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
Taheri, Seyed Iman
Algoritmos de otimização
Distributed energy resources
Distributed Generation
Distribution network
Energia (Gerenciamento)
Energy management
Multiobjective
Optimization algorithm
Recursos energéticos
Redes de distribuição de energia elétrica
Single objective
title_short Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
title_full Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
title_fullStr Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
title_full_unstemmed Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
title_sort Optimization strategies for decision-makers to increase the distributed energy resources penetration for a greener future.
author Taheri, Seyed Iman
author_facet Taheri, Seyed Iman
author_role author
dc.contributor.none.fl_str_mv Salles, Maurício Barbosa de Camargo
dc.contributor.author.fl_str_mv Taheri, Seyed Iman
dc.subject.por.fl_str_mv Algoritmos de otimização
Distributed energy resources
Distributed Generation
Distribution network
Energia (Gerenciamento)
Energy management
Multiobjective
Optimization algorithm
Recursos energéticos
Redes de distribuição de energia elétrica
Single objective
topic Algoritmos de otimização
Distributed energy resources
Distributed Generation
Distribution network
Energia (Gerenciamento)
Energy management
Multiobjective
Optimization algorithm
Recursos energéticos
Redes de distribuição de energia elétrica
Single objective
description Integrating distributed energy resources (DERs), specifically renewable distributed generation (DG), in the distribution system leads to energy management problems. These problems for electric utilities are varied based on different former improvements in distribution systems and their requirements. Therefore, this thesis presents different energy management scenarios and solutions for covering a wide range of optimization problems in the distribution systems related to integrating DERs.All these scenarios are in one direction under the \'placement of DER in the distribution system.\' This thesis analyses the strategies, including four energy management optimization problems. The first and second scenarios are the single objective and multiobjective placement of DER in the distribution system. The thesis improves the first two scenarios by a multiobjective placement and sizing by considering the distribution system hosting capacity and the former installed DER (i.e., third scenario). Finally, the fourth scenario presents the optimal dispatching of DERs and microgrids for virtual power plant (VPP) Scheduling. These scenarios include the allocation of DG, such as fuel cells, wind turbines, and solar cells, in a distribution system to guide future energy management. In these scenarios, the applied optimization algorithms are the improved teaching-learningbased optimization (TLBO) algorithm with presenting two new modifications and two new hybrid optimization algorithms. The first and second scenarios use further modifications of TLBO for DER placement in the single objective and multiobjective problems. The third scenario applies a hybrid optimization algorithm combining TLBO and honey bee mating optimization (HBMO) algorithm. The hybrid algorithm of the fourth scenario is a combination of grid search algorithm and derivative-free optimization algorithm. TLBO, HBMO, grid search, and derivative-free optimization algorithms have been reported as the best optimization algorithms in this area. Thus, this thesis, by modifying and combining those algorithms, tries to design a better optimization algorithm matched to each scenario. Moreover, an IEEE standard distribution system, a 70-bus radial distribution system, is used to implement the proposed optimization algorithms based on the power system manager scenario and objective functions. The results show the importance of the proposed algorithms to optimize objective functions. The proposed algorithms observed superiority presents the best accuracy and velocity in achieving the optimal solution among the other optimization algorithms tested. The proposed algorithms are new optimization algorithms obtained by modifying the original version of the TLBO or combine two optimization algorithms. TLBO modification is in teacher and learner phases with adding the proper optimization techniques such as quasi-opposition-based learning technique and mutation method. With the best optimal solutions, the electric utility can have an economic, technical, and environmental improvement in the power system by DERs integrations. Besides, prosumers can have full benefits from renewable generators.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3143/tde-17092021-104358/
url https://www.teses.usp.br/teses/disponiveis/3/3143/tde-17092021-104358/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258198122168320