A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18154/tde-10032025-155823/ |
Resumo: | Throughout the modernisation of the distribution system, distributed energy resources appeared, characterised by their proximity to loads and local control. In this context, microgrids (MGs) emerged to coordinate these resources with local loads, improving energy efficiency and the reliability of the grid. The MG controllers must adapt to different operating conditions without losing performance. However, due to the MGs non-linear dynamics, classical controllers cannot operate correctly if the system moves far from equilibrium. Therefore, researchers have explored adaptive algorithms, such as those based on deep reinforcement learning (DRL). This Thesis proposed an approach based on DRL to control the voltage and frequency of islanded MGs. Existing solutions tackled this problem by tuning the parameters of traditional controllers, usually with a large deep neural network, which demands a large computational effort. Thus, the present Thesis proposed a framework for optimised training of the DRL-based controller, which directly operated the MG. The proposed framework is based on i) MG modelling, ii) environment agent interaction, iii) reward function design, iv) DRL algorithm parametrisation, v) simulation tests, vi) controller hardware-in-the-loop (HIL) tests, and vii) power HIL validation. The MG was modelled using the discrete phasor models of the MG components. The discrete phasor model allows the agent to be trained with the MG model, preserving essential dynamics for the DRL algorithm and requiring low computational effort during training. The environment-agent interactions allow us to select proper DRL-based controller input/output and which scenarios should be used for training. Afterwards, designing the reward function is also critical, as the DRL-based controllers learning relies on receiving proper feedback from training in a way that learns the best actions for each operating condition. This Thesis also proposes a strategy for DRL algorithm parametrisation and simulation tests to ensure that the controller generalises its learning. The proposed approach enables DRL-based voltage and frequency control of MGs, feasible for real-world implementations with low computational cost and generalise their learning for critical operating scenarios. |
| id |
USP_9b8d2e377560d6747bb201548e6b9544 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-10032025-155823 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validationUma abordagem baseada em aprendizado profundo por reforço para controle de tensão e frequência de microrredes com validação em power Hardware-in-the-loopAprendizado profundo por reforçocontrole hierárquicocontrole de microrredesDeep reinforcement learninghardware-in-the-loophardware-in-the-loophierarchical controlmicrogrid controlThroughout the modernisation of the distribution system, distributed energy resources appeared, characterised by their proximity to loads and local control. In this context, microgrids (MGs) emerged to coordinate these resources with local loads, improving energy efficiency and the reliability of the grid. The MG controllers must adapt to different operating conditions without losing performance. However, due to the MGs non-linear dynamics, classical controllers cannot operate correctly if the system moves far from equilibrium. Therefore, researchers have explored adaptive algorithms, such as those based on deep reinforcement learning (DRL). This Thesis proposed an approach based on DRL to control the voltage and frequency of islanded MGs. Existing solutions tackled this problem by tuning the parameters of traditional controllers, usually with a large deep neural network, which demands a large computational effort. Thus, the present Thesis proposed a framework for optimised training of the DRL-based controller, which directly operated the MG. The proposed framework is based on i) MG modelling, ii) environment agent interaction, iii) reward function design, iv) DRL algorithm parametrisation, v) simulation tests, vi) controller hardware-in-the-loop (HIL) tests, and vii) power HIL validation. The MG was modelled using the discrete phasor models of the MG components. The discrete phasor model allows the agent to be trained with the MG model, preserving essential dynamics for the DRL algorithm and requiring low computational effort during training. The environment-agent interactions allow us to select proper DRL-based controller input/output and which scenarios should be used for training. Afterwards, designing the reward function is also critical, as the DRL-based controllers learning relies on receiving proper feedback from training in a way that learns the best actions for each operating condition. This Thesis also proposes a strategy for DRL algorithm parametrisation and simulation tests to ensure that the controller generalises its learning. The proposed approach enables DRL-based voltage and frequency control of MGs, feasible for real-world implementations with low computational cost and generalise their learning for critical operating scenarios.Ao longo da modernização do sistema de distribuição, surgiram os recursos energéticos distribuídos (REDs), caracterizados por sua proximidade às cargas e controle local. Nesse contexto, as microrredes (MRs) emergiram para coordenar esses recursos com as cargas locais, melhorando a eficiência energética e a confiabilidade da rede. Os controladores das MRs devem se adaptar a diferentes condições operacionais sem deterioração do desempenho. No entanto, controladores clássicos não conseguem operar corretamente caso o sistema se afaste do equilíbrio devido à dinâmica não linear das MRs. Portanto, pesquisadores têm explorado algoritmos adaptativos, como os baseados em aprendizado profundo por reforço, do inglês, Deep Reinforcement Learning (DRL). Esta Tese propôs uma abordagem de DRL para o controle de tensão e frequência em MRs ilhadas. Soluções existentes abordaram este problema otimizando a sintonia de controladores tradicionais, geralmente utilizando redes neurais artificiais profundas que demandam um grande esforço computacional. Assim, a presente Tese propôs uma estrutura para treinamento otimizado do controlador baseado em DRL, que opera diretamente a MR. A estrutura proposta é dividida em: i) modelagem da MR, ii) interação ambiente-agente, iii) projeto da função de recompensa, iv) parametrização do algoritmo de DRL, v) testes de simulação, vi) testes de controlador hardware-in-theloop (HIL) e vii) validação em Power HIL. A MR foi modelada no Simulink utilizando o modo fasorial discreto, que permite utilizar um modelo da MR que preserve as dinâmicas essenciais para o algoritmo de DRL e, enfim, demande menor esforço computacional durante o treinamento do controlador. Em seguida, definiram-se as interações ambiente-agente, selecionando adequadamente as entradas e saídas do controlador baseado em DRL e os cenários mais adequados para o treinamento. Posteriormente, foram definidas abordagens para a construção da função de recompensa também, pois o aprendizado do controlador depende da realimentação adequada, através dessa função. Esta Tese também propôs uma estratégia para a parametrização do algoritmo de DRL e testes de simulação para garantir que o controlador generalize seu aprendizado. A abordagem proposta possibilita a implementação de agentes baseados em DRL para o controle de tensão e frequência de MRs, viáveis para implementações no mundo real, com baixo custo computacional e que generalizam seu aprendizado para condições críticas de operação.Biblioteca Digitais de Teses e Dissertações da USPCoury, Denis ViniciusBarbalho, Pedro Inácio de Nascimento e2025-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18154/tde-10032025-155823/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-03-27T12:17:02Zoai:teses.usp.br:tde-10032025-155823Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-03-27T12:17:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation Uma abordagem baseada em aprendizado profundo por reforço para controle de tensão e frequência de microrredes com validação em power Hardware-in-the-loop |
| title |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| spellingShingle |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation Barbalho, Pedro Inácio de Nascimento e Aprendizado profundo por reforço controle hierárquico controle de microrredes Deep reinforcement learning hardware-in-the-loop hardware-in-the-loop hierarchical control microgrid control |
| title_short |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| title_full |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| title_fullStr |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| title_full_unstemmed |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| title_sort |
A deep reinforcement learning approach for voltage and frequency control of microgrids with power hardware-in-the-loop validation |
| author |
Barbalho, Pedro Inácio de Nascimento e |
| author_facet |
Barbalho, Pedro Inácio de Nascimento e |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Coury, Denis Vinicius |
| dc.contributor.author.fl_str_mv |
Barbalho, Pedro Inácio de Nascimento e |
| dc.subject.por.fl_str_mv |
Aprendizado profundo por reforço controle hierárquico controle de microrredes Deep reinforcement learning hardware-in-the-loop hardware-in-the-loop hierarchical control microgrid control |
| topic |
Aprendizado profundo por reforço controle hierárquico controle de microrredes Deep reinforcement learning hardware-in-the-loop hardware-in-the-loop hierarchical control microgrid control |
| description |
Throughout the modernisation of the distribution system, distributed energy resources appeared, characterised by their proximity to loads and local control. In this context, microgrids (MGs) emerged to coordinate these resources with local loads, improving energy efficiency and the reliability of the grid. The MG controllers must adapt to different operating conditions without losing performance. However, due to the MGs non-linear dynamics, classical controllers cannot operate correctly if the system moves far from equilibrium. Therefore, researchers have explored adaptive algorithms, such as those based on deep reinforcement learning (DRL). This Thesis proposed an approach based on DRL to control the voltage and frequency of islanded MGs. Existing solutions tackled this problem by tuning the parameters of traditional controllers, usually with a large deep neural network, which demands a large computational effort. Thus, the present Thesis proposed a framework for optimised training of the DRL-based controller, which directly operated the MG. The proposed framework is based on i) MG modelling, ii) environment agent interaction, iii) reward function design, iv) DRL algorithm parametrisation, v) simulation tests, vi) controller hardware-in-the-loop (HIL) tests, and vii) power HIL validation. The MG was modelled using the discrete phasor models of the MG components. The discrete phasor model allows the agent to be trained with the MG model, preserving essential dynamics for the DRL algorithm and requiring low computational effort during training. The environment-agent interactions allow us to select proper DRL-based controller input/output and which scenarios should be used for training. Afterwards, designing the reward function is also critical, as the DRL-based controllers learning relies on receiving proper feedback from training in a way that learns the best actions for each operating condition. This Thesis also proposes a strategy for DRL algorithm parametrisation and simulation tests to ensure that the controller generalises its learning. The proposed approach enables DRL-based voltage and frequency control of MGs, feasible for real-world implementations with low computational cost and generalise their learning for critical operating scenarios. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18154/tde-10032025-155823/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18154/tde-10032025-155823/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839142693830656 |