On the application of Machine Learning and Complex Networks to Neuroscience

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Alves, Caroline Lourenço
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-145944/
Resumo: Data mining and knowledge discovery is a research area with applications in various fields, such as medicine. Data mining methods have proven to be very effective in making automated diagnoses and help medical teams in decision making. In addition to using data mining, medical data can be represented by complex networks. In the case of the brain, for example, brain regions can be represented as vertices of a graph and the neural activity between the regions define the connection. In this way, we can compare the brain structure of healthy patients with that of patients with mental disorders to define diagnostic methods and gain insights into how brain structure is related to behavioral and neurological changes. The aim of the present work is to develop a predictive model that can improve the diagnosis of mental disorders such as schizophrenia, Alzheimers disease, and autism using electroencephalogram and functional magnetic resonance imaging data. In addition, it is to be tested whether the same workflow is capable of automatically detecting the influence of neurally active substances on functional changes in network structure. Because psychedelics are thought to have therapeutic potential for some mental disorders, data from experiments with ayahuasca and N,N-dimethyltryptamine were considered as examples. In general, the predictive models developed for the diseases were not only able to automatically detect the functional changes, but were also superior to the models presented in the literature. Regarding the investigation of psychedelics, it could be shown that the same workflow is equally suitable to automatically detect functional changes. Furthermore, by interpreting the models and metrics, new insights into the mechanisms of action of the substances could be gained. In addition, the present work determined which complex network measures are most effective in detecting brain changes, including new metrics developed by the author. The new metrics proved to be relevant to the studies of autism and psychedelics. It is likely that the methodology used here can be applied to other diseases and substances (e.g., antidepressants) due to its flexibility and adaptability to EEG and fMRI time series data
id USP_9efe0bc1c785af5a4b46db14591a798f
oai_identifier_str oai:teses.usp.br:tde-31082023-145944
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling On the application of Machine Learning and Complex Networks to NeuroscienceAplicações de aprendizagem de máquina e redes complexas à neurociênciaAprendizado de máquinaAprendizado profundoComplex networksDeep learningDoenças neurológicasElectroencephalogramEletroencefalogramaFunctional magnetic resonance imagingMachine learningNeurological diseasesPsicodélicosPsychedelicsRedes complexasRessonância magnética funcionalData mining and knowledge discovery is a research area with applications in various fields, such as medicine. Data mining methods have proven to be very effective in making automated diagnoses and help medical teams in decision making. In addition to using data mining, medical data can be represented by complex networks. In the case of the brain, for example, brain regions can be represented as vertices of a graph and the neural activity between the regions define the connection. In this way, we can compare the brain structure of healthy patients with that of patients with mental disorders to define diagnostic methods and gain insights into how brain structure is related to behavioral and neurological changes. The aim of the present work is to develop a predictive model that can improve the diagnosis of mental disorders such as schizophrenia, Alzheimers disease, and autism using electroencephalogram and functional magnetic resonance imaging data. In addition, it is to be tested whether the same workflow is capable of automatically detecting the influence of neurally active substances on functional changes in network structure. Because psychedelics are thought to have therapeutic potential for some mental disorders, data from experiments with ayahuasca and N,N-dimethyltryptamine were considered as examples. In general, the predictive models developed for the diseases were not only able to automatically detect the functional changes, but were also superior to the models presented in the literature. Regarding the investigation of psychedelics, it could be shown that the same workflow is equally suitable to automatically detect functional changes. Furthermore, by interpreting the models and metrics, new insights into the mechanisms of action of the substances could be gained. In addition, the present work determined which complex network measures are most effective in detecting brain changes, including new metrics developed by the author. The new metrics proved to be relevant to the studies of autism and psychedelics. It is likely that the methodology used here can be applied to other diseases and substances (e.g., antidepressants) due to its flexibility and adaptability to EEG and fMRI time series dataA mineração de dados e a descoberta de conhecimentos é uma área de estudo, com aplicações em diferentes áreas, tais como na medicina, e seus métodos têm provado ser muito eficazes na realização de diagnósticos automatizados, ajudando na tomada de decisões pelas equipes médicas. Para além da utilização da extração de dados, os dados médicos podem ser representados por redes complexas. Por exemplo, no caso do cérebro, as regiões corticais podem representar vértices num gráfico e as ligações podem ser definidas através de atividades corticais. Assim, podemos comparar a estrutura cerebral de pacientes saudáveis com a de pacientes com distúrbio mental, a fim de definir métodos de diagnóstico e de obter conhecimentos sobre a forma como a estrutura do cérebro está relacionada com mudanças comportamentais e neurológicas. O presente trabalho visava desenvolver um modelo de previsão capaz de melhorar o diagnóstico de doenças mentais como a esquizofrenia, a doença de Alzheimer e o transtorno do espectro autista , utilizando séries temporais obtidas a partir do eletroencefalograma e da ressonância magnética funcional. E, além disso, verificar se essa mesma metodologia é capaz de detectar automaticamente alterações nas redes funcionais cerebrais induzidas pela ayahuasca e pela N,N-Dimetiltriptamina, uma vez que os psicodélicos podem ter um potencial terapêutico para algumas doenças mentais . Em geral, o modelo preditivo desenvolvido para as doenças aqui estudadas foi superior ao encontrado na literatura. Quanto ao estudo dos psicodélicos, foram adquiridos novos conhecimentos sobre os seus mecanismos. Além disso, a metodologia do presente trabalho determinou quais medidas de redes complexas são mais eficazes na captura de alterações cerebrais, incluindo novas métricas desenvolvidas pelo autor. E estas novas métricas foram fundamentais no estudo do transtorno do espectro autista e das substâncias psicodélicas. Finalmente, a mesma metodologia aqui aplicada pode ser útil na interpretação de séries temporais de eletroencefalograma e ressonância magnética funcional de outras doenças e de sujeitos que consumiram outros psicodélicos ou outros medicamentos (tais como antidepressivos) e podem ajudar a obter uma compreensão detalhada nas alterações das redes funcionais cerebrais resultantes da administração de medicamentos.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Francisco AparecidoAlves, Caroline Lourenço2023-05-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-145944/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-31T18:20:02Zoai:teses.usp.br:tde-31082023-145944Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-31T18:20:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On the application of Machine Learning and Complex Networks to Neuroscience
Aplicações de aprendizagem de máquina e redes complexas à neurociência
title On the application of Machine Learning and Complex Networks to Neuroscience
spellingShingle On the application of Machine Learning and Complex Networks to Neuroscience
Alves, Caroline Lourenço
Aprendizado de máquina
Aprendizado profundo
Complex networks
Deep learning
Doenças neurológicas
Electroencephalogram
Eletroencefalograma
Functional magnetic resonance imaging
Machine learning
Neurological diseases
Psicodélicos
Psychedelics
Redes complexas
Ressonância magnética funcional
title_short On the application of Machine Learning and Complex Networks to Neuroscience
title_full On the application of Machine Learning and Complex Networks to Neuroscience
title_fullStr On the application of Machine Learning and Complex Networks to Neuroscience
title_full_unstemmed On the application of Machine Learning and Complex Networks to Neuroscience
title_sort On the application of Machine Learning and Complex Networks to Neuroscience
author Alves, Caroline Lourenço
author_facet Alves, Caroline Lourenço
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Francisco Aparecido
dc.contributor.author.fl_str_mv Alves, Caroline Lourenço
dc.subject.por.fl_str_mv Aprendizado de máquina
Aprendizado profundo
Complex networks
Deep learning
Doenças neurológicas
Electroencephalogram
Eletroencefalograma
Functional magnetic resonance imaging
Machine learning
Neurological diseases
Psicodélicos
Psychedelics
Redes complexas
Ressonância magnética funcional
topic Aprendizado de máquina
Aprendizado profundo
Complex networks
Deep learning
Doenças neurológicas
Electroencephalogram
Eletroencefalograma
Functional magnetic resonance imaging
Machine learning
Neurological diseases
Psicodélicos
Psychedelics
Redes complexas
Ressonância magnética funcional
description Data mining and knowledge discovery is a research area with applications in various fields, such as medicine. Data mining methods have proven to be very effective in making automated diagnoses and help medical teams in decision making. In addition to using data mining, medical data can be represented by complex networks. In the case of the brain, for example, brain regions can be represented as vertices of a graph and the neural activity between the regions define the connection. In this way, we can compare the brain structure of healthy patients with that of patients with mental disorders to define diagnostic methods and gain insights into how brain structure is related to behavioral and neurological changes. The aim of the present work is to develop a predictive model that can improve the diagnosis of mental disorders such as schizophrenia, Alzheimers disease, and autism using electroencephalogram and functional magnetic resonance imaging data. In addition, it is to be tested whether the same workflow is capable of automatically detecting the influence of neurally active substances on functional changes in network structure. Because psychedelics are thought to have therapeutic potential for some mental disorders, data from experiments with ayahuasca and N,N-dimethyltryptamine were considered as examples. In general, the predictive models developed for the diseases were not only able to automatically detect the functional changes, but were also superior to the models presented in the literature. Regarding the investigation of psychedelics, it could be shown that the same workflow is equally suitable to automatically detect functional changes. Furthermore, by interpreting the models and metrics, new insights into the mechanisms of action of the substances could be gained. In addition, the present work determined which complex network measures are most effective in detecting brain changes, including new metrics developed by the author. The new metrics proved to be relevant to the studies of autism and psychedelics. It is likely that the methodology used here can be applied to other diseases and substances (e.g., antidepressants) due to its flexibility and adaptability to EEG and fMRI time series data
publishDate 2023
dc.date.none.fl_str_mv 2023-05-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-145944/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-31082023-145944/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258607560687616