Modelagem GARCH multivariada
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125159/ |
Resumo: | A maioria dos ativos financeiros nos mercados mundiais apresentam variância condicional evoluindo no tempo. Para modelar tal variância, Engle e, posteriormente, Bollerslev, propuseram os modelos ARCH ('Autoregressive Conditional Heterocedasticity') e a generalização destes, conhecidos como os modelos GARCH ('Generalized Autoregressive Conditional Heterocedasticity'). Estes modelos conseguem ajustar individualmente a variância condicional de uma série temporal de forma autoregressiva no entanto, em algumas situações, também é importante descrever as relações entre várias séries. Para modelar estas relações, Engle e Kroner propuseram os modelos GARCH multivariados, os quais descrevem a matriz de covariâncias condicional de um grupo de séries de forma análoga ao caso GARCH multivariado. Osmodelos que propuseram foram: Média Movel Exponencialmente Ponderada, VEC, Diagonal VEC e BEKK ('Baba-Engle-Kraft-Kroner'). Estes modelos ajustam de forma direta a matriz de covariâncias condicional usando matrizesde parâmetros de forma autoregressiva, sob certas condições que garantem que as matrizes de covariância condicionais sejam positivas semidefinidas e o processo seja estacionário na covariância. Nos modelos diretos o número de parâmetros a serem estimados é muito grande e, para resolver este problema, foi necessário desenvolver outros métodos que ajustam a volatilidade condicional multivariada utilizando ajustes GARCH univariados como, por exemplo, os modelos de Correlação Condicional Constante e de Componentes Principais. Algumas simulações para avaliar os principais modelos serãoconsideradas, além de aplicações com dados reais do mercado financeiro do Brasil, usando software S-PLUS. |
| id |
USP_9fd62b09cf066af3b3392b954d65e5f8 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20220712-125159 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Modelagem GARCH multivariadanot availableAnálise De Séries TemporaisA maioria dos ativos financeiros nos mercados mundiais apresentam variância condicional evoluindo no tempo. Para modelar tal variância, Engle e, posteriormente, Bollerslev, propuseram os modelos ARCH ('Autoregressive Conditional Heterocedasticity') e a generalização destes, conhecidos como os modelos GARCH ('Generalized Autoregressive Conditional Heterocedasticity'). Estes modelos conseguem ajustar individualmente a variância condicional de uma série temporal de forma autoregressiva no entanto, em algumas situações, também é importante descrever as relações entre várias séries. Para modelar estas relações, Engle e Kroner propuseram os modelos GARCH multivariados, os quais descrevem a matriz de covariâncias condicional de um grupo de séries de forma análoga ao caso GARCH multivariado. Osmodelos que propuseram foram: Média Movel Exponencialmente Ponderada, VEC, Diagonal VEC e BEKK ('Baba-Engle-Kraft-Kroner'). Estes modelos ajustam de forma direta a matriz de covariâncias condicional usando matrizesde parâmetros de forma autoregressiva, sob certas condições que garantem que as matrizes de covariância condicionais sejam positivas semidefinidas e o processo seja estacionário na covariância. Nos modelos diretos o número de parâmetros a serem estimados é muito grande e, para resolver este problema, foi necessário desenvolver outros métodos que ajustam a volatilidade condicional multivariada utilizando ajustes GARCH univariados como, por exemplo, os modelos de Correlação Condicional Constante e de Componentes Principais. Algumas simulações para avaliar os principais modelos serãoconsideradas, além de aplicações com dados reais do mercado financeiro do Brasil, usando software S-PLUS.not availableBiblioteca Digitais de Teses e Dissertações da USPChiann, ChangLopera, Mauricio Alejandro Mazo2011-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125159/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T15:53:03Zoai:teses.usp.br:tde-20220712-125159Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T15:53:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Modelagem GARCH multivariada not available |
| title |
Modelagem GARCH multivariada |
| spellingShingle |
Modelagem GARCH multivariada Lopera, Mauricio Alejandro Mazo Análise De Séries Temporais |
| title_short |
Modelagem GARCH multivariada |
| title_full |
Modelagem GARCH multivariada |
| title_fullStr |
Modelagem GARCH multivariada |
| title_full_unstemmed |
Modelagem GARCH multivariada |
| title_sort |
Modelagem GARCH multivariada |
| author |
Lopera, Mauricio Alejandro Mazo |
| author_facet |
Lopera, Mauricio Alejandro Mazo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Chiann, Chang |
| dc.contributor.author.fl_str_mv |
Lopera, Mauricio Alejandro Mazo |
| dc.subject.por.fl_str_mv |
Análise De Séries Temporais |
| topic |
Análise De Séries Temporais |
| description |
A maioria dos ativos financeiros nos mercados mundiais apresentam variância condicional evoluindo no tempo. Para modelar tal variância, Engle e, posteriormente, Bollerslev, propuseram os modelos ARCH ('Autoregressive Conditional Heterocedasticity') e a generalização destes, conhecidos como os modelos GARCH ('Generalized Autoregressive Conditional Heterocedasticity'). Estes modelos conseguem ajustar individualmente a variância condicional de uma série temporal de forma autoregressiva no entanto, em algumas situações, também é importante descrever as relações entre várias séries. Para modelar estas relações, Engle e Kroner propuseram os modelos GARCH multivariados, os quais descrevem a matriz de covariâncias condicional de um grupo de séries de forma análoga ao caso GARCH multivariado. Osmodelos que propuseram foram: Média Movel Exponencialmente Ponderada, VEC, Diagonal VEC e BEKK ('Baba-Engle-Kraft-Kroner'). Estes modelos ajustam de forma direta a matriz de covariâncias condicional usando matrizesde parâmetros de forma autoregressiva, sob certas condições que garantem que as matrizes de covariância condicionais sejam positivas semidefinidas e o processo seja estacionário na covariância. Nos modelos diretos o número de parâmetros a serem estimados é muito grande e, para resolver este problema, foi necessário desenvolver outros métodos que ajustam a volatilidade condicional multivariada utilizando ajustes GARCH univariados como, por exemplo, os modelos de Correlação Condicional Constante e de Componentes Principais. Algumas simulações para avaliar os principais modelos serãoconsideradas, além de aplicações com dados reais do mercado financeiro do Brasil, usando software S-PLUS. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-03-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125159/ |
| url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125159/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258341180440576 |