Bringing new insights into the Curve Number method based on a large catchment sample

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Brandão, Abderraman Róger de Amorim
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18138/tde-22042025-095016/
Resumo: In various fields, determining surface runoff is essential, and the Curve Number method from the Natural Resources Conservation Service (NRCS-CN) is the most widely used approach for estimating runoff from precipitation events. However, there are still unresolved issues in diverse aspects of the method. Data analysis and machine learning have become an integral part of modern scientific methodology, opening opportunities to explore these questions. The objective of this dissertation is to analyze the NRCS-CN method based on a large sample of watersheds from different countries. In the first part, CN values were calculated, and the effects of the standard initial abstraction value (λ= 0.2) were investigated in comparison with a proposed substitute (λ= 0.05), using three distinct methods. The precipitation threshold for CN calibration and the relationship between the method\'s parameters and watershed characteristics were also evaluated using machine learning techniques. The results indicated that the least squares method outperformed the tabulated CN method. The performance was more accurate using λ= 0.05 compared to the standard λ= 0.2, and the precipitation threshold of 25.4 mm showed the best performance for CN calculation. Land cover emerges as the most influential characteristic in determining the value λ. The spatial variability of CN revealed that high CN values were associated with slope, precipitation, and silt content in the soil, while low CN values align to forested lands, sandy soil regions, and the aridity index. In the second part, the analysis compared the ranking of precipitation and runoff event pairs with the use of natural data in calibrating the method. The analysis of ordered data resulted in higher CN values compared to natural data, varying from five to fifteen units. The estimation of CN using ordered data improved runoff performance across all methods compared to natural data. By employing a comprehensive sample of watersheds, this research provides new perspectives for improving the application of the method. The advancements resulting from this study have the potential to enhance the accuracy of runoff estimates, with practical implications that can benefit various fields of science, especially in unmonitored regions.
id USP_a259f51158990b7d1dc40b23baec723e
oai_identifier_str oai:teses.usp.br:tde-22042025-095016
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Bringing new insights into the Curve Number method based on a large catchment sampleNovos insights sobre o método Curva Número a partir de uma grande amostra de bacias hidrográficasaprendizado de máquinachuva-escoamentocobertura do soloescoamento superficialinfiltraçãoinfiltrationland covermachine learningrainfall-runoffscs-cnscs-cnsurface runoffIn various fields, determining surface runoff is essential, and the Curve Number method from the Natural Resources Conservation Service (NRCS-CN) is the most widely used approach for estimating runoff from precipitation events. However, there are still unresolved issues in diverse aspects of the method. Data analysis and machine learning have become an integral part of modern scientific methodology, opening opportunities to explore these questions. The objective of this dissertation is to analyze the NRCS-CN method based on a large sample of watersheds from different countries. In the first part, CN values were calculated, and the effects of the standard initial abstraction value (λ= 0.2) were investigated in comparison with a proposed substitute (λ= 0.05), using three distinct methods. The precipitation threshold for CN calibration and the relationship between the method\'s parameters and watershed characteristics were also evaluated using machine learning techniques. The results indicated that the least squares method outperformed the tabulated CN method. The performance was more accurate using λ= 0.05 compared to the standard λ= 0.2, and the precipitation threshold of 25.4 mm showed the best performance for CN calculation. Land cover emerges as the most influential characteristic in determining the value λ. The spatial variability of CN revealed that high CN values were associated with slope, precipitation, and silt content in the soil, while low CN values align to forested lands, sandy soil regions, and the aridity index. In the second part, the analysis compared the ranking of precipitation and runoff event pairs with the use of natural data in calibrating the method. The analysis of ordered data resulted in higher CN values compared to natural data, varying from five to fifteen units. The estimation of CN using ordered data improved runoff performance across all methods compared to natural data. By employing a comprehensive sample of watersheds, this research provides new perspectives for improving the application of the method. The advancements resulting from this study have the potential to enhance the accuracy of runoff estimates, with practical implications that can benefit various fields of science, especially in unmonitored regions.Em diversos campos, é fundamental determinar o escoamento superficial, e o método do Curva Número do Serviço de Conservação de Recursos Naturais (NRCS-CN) é a abordagem mais amplamente utilizada para estimar esse escoamento. No entanto, ainda existem questões remanescentes em múltiplos aspectos do método. A análise de dados e o aprendizado de máquina se tornaram uma parte integrante da metodologia científica moderna, abrindo oportunidades para explorar essas questões. O objetivo desta dissertação é analisar o método NRCS-CN com base em uma grande amostra de bacias hidrográficas de diferentes países. Na primeira parte, foram calculados os valores de CN e investigados os efeitos do valor padrão de da abstração inicial (λ= 0,2) em comparação com possível substituto λ= 0,05, utilizando três métodos distintos. Também foi avaliado o limiar de precipitação para a calibração do CN e a relação entre os parâmetros do método e as características das bacias, empregando técnicas de aprendizado de máquina. Os resultados indicaram que o método de mínimos quadrados superou o método em que os valores de CN foram tabelados. O desempenho foi mais preciso usando λ= 0,05 em comparação com o padrão λ= 0,2, e o limiar de precipitação de 25,4 mm teve o melhor desempenho para calcular CN. A cobertura do solo foi identificada como a característica mais influente na determinação do valor de λ. A variabilidade espacial do CN revelou que altos valores de CN estavam associados à inclinação, precipitação e conteúdo de silte do solo, enquanto baixos valores de CN estavam relacionados a terras florestais, regiões de solos arenosos e o índice de aridez. Na segunda parte, a análise comparou o ranqueamento dos pares de eventos de precipitação e escoamento com o uso de dados naturais na calibração do método. A análise do uso de dados ordenados resultou em valores de CN mais altos em comparação aos dados naturais, variando de cinco a quinze unidades. A estimativa do CN com dados ordenados melhorou o desempenho do escoamento para todos os métodos em relação ao uso de dados naturais. Ao empregar uma amostra abrangente de bacias, a pesquisa oferece novas perspectivas para melhorar a aplicação do método. Os avanços resultantes deste estudo têm o potencial de ampliar a precisão das estimativas de escoamento, com implicações práticas que podem beneficiar várias áreas da ciência, especialmente em regiões não monitoradas.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Paulo Tarso Sanches deBrandão, Abderraman Róger de Amorim2025-03-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18138/tde-22042025-095016/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-25T13:13:02Zoai:teses.usp.br:tde-22042025-095016Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-25T13:13:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Bringing new insights into the Curve Number method based on a large catchment sample
Novos insights sobre o método Curva Número a partir de uma grande amostra de bacias hidrográficas
title Bringing new insights into the Curve Number method based on a large catchment sample
spellingShingle Bringing new insights into the Curve Number method based on a large catchment sample
Brandão, Abderraman Róger de Amorim
aprendizado de máquina
chuva-escoamento
cobertura do solo
escoamento superficial
infiltração
infiltration
land cover
machine learning
rainfall-runoff
scs-cn
scs-cn
surface runoff
title_short Bringing new insights into the Curve Number method based on a large catchment sample
title_full Bringing new insights into the Curve Number method based on a large catchment sample
title_fullStr Bringing new insights into the Curve Number method based on a large catchment sample
title_full_unstemmed Bringing new insights into the Curve Number method based on a large catchment sample
title_sort Bringing new insights into the Curve Number method based on a large catchment sample
author Brandão, Abderraman Róger de Amorim
author_facet Brandão, Abderraman Róger de Amorim
author_role author
dc.contributor.none.fl_str_mv Oliveira, Paulo Tarso Sanches de
dc.contributor.author.fl_str_mv Brandão, Abderraman Róger de Amorim
dc.subject.por.fl_str_mv aprendizado de máquina
chuva-escoamento
cobertura do solo
escoamento superficial
infiltração
infiltration
land cover
machine learning
rainfall-runoff
scs-cn
scs-cn
surface runoff
topic aprendizado de máquina
chuva-escoamento
cobertura do solo
escoamento superficial
infiltração
infiltration
land cover
machine learning
rainfall-runoff
scs-cn
scs-cn
surface runoff
description In various fields, determining surface runoff is essential, and the Curve Number method from the Natural Resources Conservation Service (NRCS-CN) is the most widely used approach for estimating runoff from precipitation events. However, there are still unresolved issues in diverse aspects of the method. Data analysis and machine learning have become an integral part of modern scientific methodology, opening opportunities to explore these questions. The objective of this dissertation is to analyze the NRCS-CN method based on a large sample of watersheds from different countries. In the first part, CN values were calculated, and the effects of the standard initial abstraction value (λ= 0.2) were investigated in comparison with a proposed substitute (λ= 0.05), using three distinct methods. The precipitation threshold for CN calibration and the relationship between the method\'s parameters and watershed characteristics were also evaluated using machine learning techniques. The results indicated that the least squares method outperformed the tabulated CN method. The performance was more accurate using λ= 0.05 compared to the standard λ= 0.2, and the precipitation threshold of 25.4 mm showed the best performance for CN calculation. Land cover emerges as the most influential characteristic in determining the value λ. The spatial variability of CN revealed that high CN values were associated with slope, precipitation, and silt content in the soil, while low CN values align to forested lands, sandy soil regions, and the aridity index. In the second part, the analysis compared the ranking of precipitation and runoff event pairs with the use of natural data in calibrating the method. The analysis of ordered data resulted in higher CN values compared to natural data, varying from five to fifteen units. The estimation of CN using ordered data improved runoff performance across all methods compared to natural data. By employing a comprehensive sample of watersheds, this research provides new perspectives for improving the application of the method. The advancements resulting from this study have the potential to enhance the accuracy of runoff estimates, with practical implications that can benefit various fields of science, especially in unmonitored regions.
publishDate 2025
dc.date.none.fl_str_mv 2025-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18138/tde-22042025-095016/
url https://www.teses.usp.br/teses/disponiveis/18/18138/tde-22042025-095016/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839154700025856